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Abstract

Remarkable results have been obtained using image models based on image patches,
for example sparse generative models for image inpainting, noise reduction and super-
resolution, sparse texture segmentation or texton models. In this paper we propose a
powerful and yet simple approach for segmentation using dictionaries of image patches
with associated label data. The approach is based on ideas from sparse generative im-
age models and texton based texture modeling. The intensity and label dictionaries are
learned from training images with associated label information of (a subset) of the pixels
based on a modified vector quantization approach. For new images the intensity dictio-
nary is used to encode the image data and the label dictionary is used to build a segmen-
tation of the image. We demonstrate the algorithm on composite and real texture images
and show how successful training is possible even for noisy image and low-quality label
training data. In our experimental evaluation we achieve state-of-the-art performance for
segmentation.

1 Introduction

We address the problem of supervised image segmentation. Our approach is based on a set
of image patches stored in an intensity dictionary, with associated label information stored
in a label dictionary. These dictionaries are learned from training data. Based on the inten-
sity dictionary we encode an unknown image, and use the associated label information for
inferring label probabilities to each pixel. Our methods is simple and highly robust to noise
as illustrated in the segmentation examples in Figure 1.

The proposed method is based on modeling an image using small image patches, which
has similarities to sparse image coding [3, 14] and textons [7, 9, 17]. Sparse methods based
on an overcomplete dictionary have become very popular for solving a number of image
analysis problems. This group of methods is generative and models an image by linearly
combining a set of dictionary atoms. The generative nature is directly applicable in for ex-
ample image restoration problems like denoising [4, 6], image compression [2], inpainting
and texture seperation [5], super-resolution [19] and many more [3]. Some of the attractive
properties of the sparse methods are their robustness to noise, closeness to data and simplic-
ity in both implementation and interpretation. We aim at adopting these properties in our
method, which generally target discriminative problems.

© 2011. The copyright of this document resides with its authors, BMVC 2011 http:/dx.doi.org/10.5244/C.25.77
It may be distributed unchanged freely in print or electronic forms.


Citation
Citation
{Elad} 2010

Citation
Citation
{Olshausen and Field} 1997

Citation
Citation
{Julesz} 1981

Citation
Citation
{Leung and Malik} 2001

Citation
Citation
{Shotton, Johnson, and Cipolla} 2008

Citation
Citation
{Elad and Aharon} 2006

Citation
Citation
{Fletcher, Rangan, Goyal, and Ramchandran} 2006

Citation
Citation
{Bryt and Elad} 2008

Citation
Citation
{Elad, Starck, Querre, and Donoho} 2005

Citation
Citation
{Yang, Wright, Huang, and Ma} 2008

Citation
Citation
{Elad} 2010


2 DAHL, LARSEN: LEARNING DICTIONARIES OF DISCRIMINATIVE IMAGE PATCHES

PN e wp i v"{i‘

Ry

(a)

Figure 1: Example of multi class segmentation using patch based classification. (a) com-
bination of five Brodatz textures — left original and right added 50 % Gaussian noise. (b)
histopathological colored tissue sample of cell nuclei — left training sample, center original
test image and right added 100 % Gaussian noise (relative to standard deviation).

Sparse methods based on dictionary learning has previously been used for discriminative
problems [11, 12, 15, 18]. These methods are based on one dictionary for each class and the
residual error as the discriminant. They show that a class specific dictionary can be chosen,
which sparsely encode one class well and other classes bad. This requires a dictionary for
each class, which is computational costly, but these methods achieve very high performance.
Initially the chosen dictionaries were optimized for reconstruction [15, 18], but significant
improvements have been shown by optimizing for discriminative power [11, 12]. The proce-
dure that we suggest is different from these methods, by using one dictionary for encoding an
image and then inferring label probabilities from the label dictionary. The result is a simple
model with only one dictionary for all classes.

2 Method

Our method is based on a dictionary of image patches, which we will denote dictionary
atoms. To each atom we associate a label atom that we use for building the segmentation
image. The procedure for building the dictionary is illustrated in Figure 2 and the segmenta-
tion procedure is shown in Figure 3. Basically the segmentation is performed by finding the
nearest dictionary atom to an image patch. The associated label atom is used for inferring the
label probability to the image region covered by the image patch. Patches are overlapping so
several label atoms are added to the same pixel.

A good dictionary is characterized by modeling the image patches well and containing
atoms that are unique for a given texture. We use these two properties in constructing our
discriminative dictionary.

In our approach we store the image intensity information and the label information in
separate dictionaries. We denote the intensity dictionary D € R?*™_which is a matrix with
m atoms — one in each column. A dictionary atom is an image patch concatenated to a vector.
The size of the image patch is \/n x \/n and h is the color depth with for example & = 1 for
a grey scale image and /& = 3 for a RGB image. D is used for modeling an image patch x by
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Figure 2: Schematic illustration of the construction of the dictionary. (a) is the intensity
dictionary and (b) is the label dictionary. Note that the label dictionary atoms can cover
more than one class. A set of training image patches are used for constructing the dictio-
naries based on the modified vector quantization described in Algorithm 1 and 2, and the
segmentation is carried out using Algorithm 3.

choosing the nearest atom ind; € D
d* = min||d; —x||, (1)
J

where j = {1,...,m}. We want to learn D from data to model the image textures well. This
can be found by choosing D such that it minimizes the residual error

4
D =argmin }_ || — x|, 2
D =1
where o is the number of training samples. This is a clustering problem, that is known to be
NP-hard [10], but a good iterative approximation based on vector quantization can be found
with the k-means algorithm.

A dictionary with small residual errors on the image atoms does not necessarily have
good discriminative properties. So, simultaneously to modeling intensity data well, we also
want the dictionary atoms to be unique for a specific class and hereby have high discrimina-
tive power. We associate the intensity dictionary D with a label dictionary L € [0; 1]/,
where [ is the number of classes. The spatial extension of the label dictionary atoms is the
same as the intensity dictionary, so a probability can be inferred on each pixel. Each atom d;
in D has an associated atom 1; in L, and a pixel in a label atom contains the probability of all
classes, so Yi_ I;(g) = 1 where g € {1,...,n} is the pixels in the label atom. Ideally a pixel
in a label atom will have probability 1 for one class and O for all other classes. An observed
label atom can be changed to an ideal atom by changing the label probabilities. We denote
the ideal label atom 1 and this is found by

oy |1 ifk=maxiL(g)
L(s) = { 0 otherwise @)

The discriminative power of the dictionary atoms can be found by the following minimiza-
tion

o n
L:argminZZHiifliHl, 4
L i=lg=1

where each atom in L is optimized to contain label information for one class in each pixel.
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Algorithm 1 Initialize the dictionary

e

Require: Set of training images (P) with associ- for i =2ton do

ated label images (B;) and empty dictionaries ~ 5:  w= min;fdil (1-1 1 Yo = Ll| )
Dand L
6:  if (w>0) then
1: Select a random subset of 1 images patches  7: Add x] to D and y} to L
X' of size \/n X \/n x h and corresponding ~ 8: else
subset of label patches Y’ of size \/nx \/nx1 9 ng=ng+1
10: d,, =x/andl,, =y}
2: Set the first patch and label patch as the first 11:  end if
dictionary atoms d; = x; and 1| =y, 12: end for
3: Set number of dictionary atoms n; = 1 13: return D and L
Algorithm 2 Building the dictionary
Require: Set of images used for initializing the
dictionaries (P, P;) and initialized dictionar-  8: w = minL (1 — l 1Zk yie —
ies (D, L) IZHI)
1: Select the set of all images patches X of 9 if (w > 0) then
size y/n X \/n x h and all corresponding la- 10 Add x; to D o5
bel patches Y of size v/n x \/n x 1 11 else
2: Choose empty positive and negative intensity ~ 12: Add x; to Dyeg
dictionaries Doy, Dyeq and empty label dic-  13: endif
tionary L 14: Addy;toL
3: Choose number of iterations nj,, and a dis- 15:  end for
placement factor 7 16:  Update dictionaries D:
4: fort =1 to nj,, do 17: for j=1tomdo
5. Build ideal label dictionary L (Equation 3) 18 dj =d;+ 7(dpos,j — dpeg, ;)
19:  end for
6: fori=1toodo 20:  SetL =L
7: Find d* (Equation 1) and the corre- 21: end for

sponding ideal label dictionary atom i* 22 return D and L

Fi

(b)

(c)

Figure 3: Schematic illustration of the labeling. In (a) an image patch is extracted and the
most similar dictionary atom is found. In (b) the corresponding label atom is added to the
label probability image in a window covering the same spatial area as in the intensity image.
Note that this is a binary segmentation, so the label image has two label dimensions. The
binary segmentation (c) is found as the label image with the highest energy (the black and
white part). The figure illustrates labeling half way through the algorithm.
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The coupling of the label and intensity dictionaries requires the optimization to be done
for both dictionaries simultaneously. We propose an iterative approach for approximating
the solutions of Equations 2 and 4. First we initialize the dictionaries using a subset of
the training image patches, as described in Algorithm 1. The procedure ensures that the
initial dictionary atoms are unique, such that image patches both with similar intensity and
similar label patches belong to the same dictionary atoms. Based on the initialized atoms the
dictionary is iteratively optimized based on the procedure described in Algorithm 2.

Algorithm 2 is a modified vector quantization, but the label information is included in
building the clusters. The dictionary atoms are iteratively updated to be moved towards
image patches that have similar labels as the ideal label atom (Equation 3) and away from
dissimilar patches. This is implemented by dividing the image patches into similar and
dissimilar groups where each group has a center point in R"*”. These two center points
form a vector and we move along this vector towards the center of the similar group. The
step towards the similar group is controlled by the parameter 7. We found the algorithm to
obtain good performance after 20 - 40 iterations. The performance is not sensitive to the
choice of T where we found a vale between 0.1 - 0.5 to be a good choice, and all experiments
are performed using T = 0.2.

To build the label dictionary we employ the label dictionary. The label image is a prob-
ability map for the class labels. Given an image P € R™“*" we construct a label image
P; € [0; 1)</ initially with all zeros. We build the label image by pixel wise coding P
using the dictionary D. This is done by visiting all pixels P(i, j) where we can extract a
v/n x \/n x h image patch. The nearest dictionary atom d; is found and the corresponding
label patch 1; is added to the \/n X \/n x [ image window centered at position (i, j). The final
label image will in each pixel P;(i, j) have the average probability of all labels that covered
that pixel. The third dimension of P; encodes probability for each label. Figure 3 illustrates
the labeling process and Algorithm 3 describes the steps in the labeling procedure.

3 Experiments
We have performed a number of segmentation experiments on composed and natural textures

to demonstrate the properties of our model. The experiments show the method’s flexibility
and robustness to noise, and we compare to similar approaches on a number of image com-

Algorithm 3 Image labeling

Require: Image to be labeled (P) and empty la- 6 t,=0
bel image (P;) and trained dictionaries (D, L)) 7 fori,=i—s,toi+s;,do
8: tr=t+1,t, =0

1: Select the set of all g images patches X of o for je=j—syto j+s, do
size \/n x y/n x h from I and all correspond- 10: fe =lc+ 1 .
ing label patches Y of size \/n x \/n x [ from 1V L(ir, je) =1 (tr 1c)
P, 12: end for

2 s, = |Vi/2] 13: end for

3: fori=1+s,tor—s;, do 14 end for

4:  for j=14s,toc—s;,do 15: end for

5: Find d* (i, j) (Equation 1) 16: return J;
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Figure 4: Examples of the test textures used in the segmentation experiment. Top row shows
the composed textures, middle row shows the ground truth and bottom row shows the seg-
mentation results. The shown examples are image number #4, #7, #9, and #12, with 5,16, 10
and 2 texture classes.

positions made from Brodatz textures [1], the VisTex database', and the MeasTex database?.
The textures and training samples are downloaded from Randen’s homepage®. These tex-
tures are described in [16] and examples are shown in Figure 4.

Composed textures Our texture segmentation experiments are compared to [11, 18] and
the results are shown in Table 1. The proposed method performs better than existing methods
in more than half of the samples, and follows closely in the rest. On average it performs better
than the best performing previous method by [11] and there is not an outlier like texture #2
in[11].

We have performed the segmentation by training a dictionary as described in Section 2.
In Table 2 the number of patches for initializing the dictionaries are shown together with the
size of the resulting dictionaries. The images are preprocessed by taking first and second
order derivatives excluding the original intensity, which results in five dimensions in each
pixel(f’ = [P,,Py,P, Py, ny]T). We have used a Gaussian mask on each image patch with
a standard deviation of half the patch size (1.5 for the 3 x 3 patches).

From the segmentation procedure we obtain a probability image. These probability im-
ages have been postprocessed by smoothing to obtain the final segmentation, which closely
follows the procedure described in [11]. The first smoothing is obtained by convolving
the probability image using a Gaussian filter with a standard deviation of 8. The second
smoothing is based on graph cuts using the method of Kolmogorov and Zabih [8]. Before
applying graph cuts we convolve using a Gaussian with standard deviation of 4.5. We use
a 8-neighborhood graph and o-expansion to obtain the final segmentation. To speed up the
nearest neighbor search for image and dictionary atoms we use approximate nearest neighbor
based the FLANN library by Muja and Lowe [13].

The effect of including the label atoms in the optimization is shown in Table 1. In this

http://vismod.media.mit.edu/vismod/imagery/VisionTexture/
Zhttp://www.texturesynthesis.com/meastex/meastex.html
3http://www.ux.uis.no/~tranden/
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] | [18] [I1] Label-optimized k-means |
[ #] Gauss GC Gauss GC |

1 5.50 1.61 2.00 1.52 2.20 1.50

2 730 1642 6.85 4.31 5.49 4.12

3 13.20 4.15 5.95 3.66 6.79 4.39

4 5.60 3.67 3.86 3.60 5.49 4.58

5 10.50 4.32 3.91 3.70 4.95 3.02

6 17.10 9.04 18.24 13.58 2255 17.77

7 17.20 8.80 10.12 5.66 14.66 9.18

8 18.90 2.24 9.82 6.74 2090 23.02

9 21.40 2.04 6.85 2.57 16.10 5.24

10 NA 0.17 0.27 0.20 0.19 0.06

11 NA 0.60 1.20 1.09 1.92 1.64

12 NA 0.37 3.34 1.58 1.56 0.77

Avg. | (11.67) 4.45 6.03 4.00 7.48 6.27

Table 1: Texture segmentation performance compared to existing segmentation algorithms.
Results are error rates in percentage. The two procedures Label optimized is based on the
proposed method and k-means is based on building the dictionary from k-means clustering
with same dictionary sizes as in the label optimized. Gauss is segmentation based on Gaus-
sian smoothing and GC is segmentation based on graph cuts. Best performance is marked
with bold. All patches are 3 x 3 pixels.

experiment the atoms are build based on k-means clustering using the same dictionary sizes
as obtained from the label optimized method. In some of the examples with few classes the
k-means method outperforms the label-optimized method. But especially for samples with
many classes, and on average, the k-means is inferior to the label optimized method.

The size of the atoms influences the performance of the algorithm, and we found small
atoms of 3 x 3 pixels superior. In Table 3 we show results with varying atom sizes. We
also performed an experiment with varying noise levels. We added 10% and 20% Gaussian
noise and the average segmentation errors rose from 6.03% to 6.19% and 15.24%. In this
experiment we employed only Gaussian smoothing postprocessing.

Detailed compositions The dictionary atoms can contain textures from more than one tex-
ture class, which makes them suitable for segmenting detailed structures. This is illustrated

[ # | Init. size  Dict. size | # [ Init. size Dict. size
1 15,000 5,262 7 50,000 39,535
2 15,000 7,329 8 50,000 31,868
3 15,000 9,644 9 50,000 38,894
4 15,000 10,043 | 10 15,000 4,448
5 15,000 8,579 | 11 15,000 3,558
6 50,000 35,769 | 12 15,000 3,562

Table 2: Size of the dictionaries. Init. size is the number of patches used for initializing the
dictionary and Dict. size is the size of the resulting dictionary.
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| Patchsize (pixels) [ 3x3 5x5 7x7 9x9 11x11 |
[ Avg. | 781 853 989 13.00 1638 |

Table 3: Average performance with varying patch size. The dictionaries was initialized with
1/10 of the size of the dictionaries in Table 2 to decrease the computational time.

Figure 5: Examples of the segmentation of a histopathological tissue sample. The two small
images upper left are training image and training mask. The resulting test image and segmen-
tation is shown upper right. Bottom row shows the image probability maps for background
(left), blue stained cell nuclei (center), and brow stained cytoplasm (right). 4 x 4 pixel image
patches were used and no smoothing.

<

Figure 6: Segmentation examples of detailed composed images. Top row test images and
bottom row segmentation results. Each image is a composition of Brodatz textures. Segmen-
tation error from left to right are 5.48%, 4.31%, 2.97%, 10.15%, 3.28%, and 5.98%. We
used 11 x 11 pixel image patches and no smoothing.

in Figure 5 and 6, which shows how the method is capable of precisely segmenting detailed
structures.
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4 Discussion

We have presented a method for segmentation problems that is solved in a simple yet pow-
erful manner. It incorporates the attractive properties of sparse methods including simplicity
in training, models that are easy to interpret, and high robustness to noise. It is related to tex-
tons by learning local discriminative dictionary atoms from image data. In our experimental
examples we focus on segmentation, but we believe that the method could be adapted to a
range of discriminative problems.

The proposed method is simple compared to prior work because it contains all texture
information in one dictionary. This is different from methods based on learning a dictionary
for each class like [11, 12, 15, 18]. Employing an approximate nearest neighbor search
makes the encoding complexity O(nlogn), and having only one dictionary this search can be
done very fast even for large dictionaries. This has allowed us to use much larger dictionaries
than for example suggested in [11], where they use dictionaries of 128 atoms. A limitation
is the memory usage, because the label dictionary needs atoms for all classes, and building
the label image from overlapping atoms also requires some processing power.

We found this procedure to be highly robust to noise, which we expect to be an advantage
over methods dependent on the residual encoding error as a discriminant. We expect an
increased noise level to dominate the residual and this way reduce the discriminative power
of this group of methods. In our future work we plan to experimentally validate this claim.
For the test textures we experienced a decline in performance when adding around 15%
Gaussian noise, but in other examples we were able to add up to 50% - 100% noise with
only little decrease in performance. The method is especially robust for noise added to
regular textures.

In this paper we have focused on segmentation, where the method is superior to prior
work. Despite the limited number of samples this data contains a large variation in textures
and is a challenging segmentation benchmark [11, 18]. Furthermore we have demonstrated
the method for segmenting detailed image structures, where the method has the advantage
that the dictionary atoms can code for more than one class label. In addition the method
provides a probability map, which can be used together with for example a shape prior to
give very precise segmentations.

We have also tested a k-means clustering approach, where the dictionary is build as
cluster centers in the intensity image. In this approach no label information is included in the
optimization. This simple approach works well for textures with few classes, but especially
for textures containing many label classes this unsupervised approach is inferior.

The proposed dictionary training approach has nice properties in increasing the segmen-
tation performance, but there is no guarantee for convergence towards a fixed dictionary or
any performance expectations. An analysis of convergence properties together with effective
data structures for reducing computational cost is the plan for future research.

5 Conclusion

We have presented a framework for solving discriminative problems based on learning a
generative discriminative dictionary of local image patches employing a modified vector
quantization. This dictionary of intensity atoms is coupled with a label dictionary. We
learn the dictionaries from training data using an iterative optimization procedure to obtain
intensity atoms that model the image well and have high discriminative power. With our
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approach we obtain state-of-the-art results. The proposed method is well suited to segment
detailed structures, because the dictionary atoms can contain label information for multiple
classes. Our procedure is especially robust to noise, making it applicable to a range of
problems.
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