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Abstract 
This paper presents a novel dictionary learning method for image denoising, 

which removes zero-mean independent identically distributed additive noise from a 
given image. Choosing noisy image itself to train an over-complete dictionary, the 
dictionary trained by traditional sparse coding methods contains noise information. 
Through mathematical derivation of equation, we found that a lower bound of 
dictionary is related with the level of noise in dictionary learning. The proposed idea 
is to take advantage of the noise information for designing a sparse coding algorithm 
called improved sparse coding (ISC), which effectively suppresses the noise 
influence for training a dictionary. This denoising framework utilizes the effective 
method, which is based on sparse representations over trained dictionaries. Acquiring 
an over-complete dictionary by ISC mainly includes three stages. Firstly, we utilize 
K-means method to group the noisy image patches. Secondly, each dictionary is 
trained by ISC in corresponding class. Finally, an over-complete dictionary is merged 
by these dictionaries. Theory analysis and experimental results both demonstrate that 
the proposed method yields excellent performance.   

1 Introduction 
Image denoising is not only an old image processing problem but also a hot research field 
that goes on to attract researchers with a goal to do better restoration in the present of 
noise. With the modern science and technology development, acquisition hardware is easy 
to deal with images with wonderful high resolution and at high shutter speeds. But these 
factors also lead that image capturing devices are prone to corruption by noise. Effective 
image denoising technique can help camera manufacturers solve this problem. This also 
makes image denoising still a hot problem continuing research. As follows, the problem of       
denoising can mathematically be shown from the observation model 
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ݕ = ݔ +  (1)                                                               ,ߟ
where x is the original image, ߟ	denotes the noise with distribution unknown. Our goal is to 
design a denoising algorithm which can remove the noise from y. Recently, many 
denoising algorithms [1-6] work on image patches, so it is useful to formulate a patch-
based image model ݕ௜ = ௜ݔ +  ௜,                                                             (2)ߟ
where ݔ௜ is the original patch intensity written in a vectorized form, ݕ௜ is the vectorized 
noisy image patch and ߟ௜ is a vectorized noise patch. 

Although the denoising model of (2) is linear in the unknown image, some successful 
methods [1-6] related with denoising problem have been adopted to this inverse problem, 
leading to state-of-the-art performance. Of these various approaches, recently the proposed 
Non-Local Means (NLM) [1] algorithm assumes that the noise is uncorrelated across 
locations and zero-mean, making use of the repetitive structures in an image. Kervrann and 
Boulanger [2] improve on the performance of NLM by adding an adaptive search window 
along with a revised weight calculation formula. Takeda et al. [3] propose a framework for 
denoising problem by utilizing steering kernel regression (SKR) where the kernels are 
designed to make the similarity of image pixels in a neighbourhood.  Another successful 
denosing method is called K-SVD [4], which assumes the image patches can be sparse 
representation. Elad and Aharon take advantage of this assumption to learn an effective 
over-complete dictionary for the noisy image patches such that each noisy patch can be 
represented as a linear combination of only a few atoms among the dictionary. Chatterjee 
and Milanfar [5] present a clustering-based framework called K-LLD which is inspired by 
the approaches in [3] and [4] to perform denoising. The denoising methods stated above 
are based on spatial domain. In [6], BM3D proposed by Dabov et al. also makes use of the 
idea of NLM by finding similar patches in an image and grouping them together. The 
denoising process in BM3D is, however, done by transform domain.  

Utilizing sparse representation framework for image denosing has acquired a state-of-
the-art performance. Choosing a suitable dictionary is important for this framework. The 
concept of dictionary learning that generates sparse representation for a set of training 
image patches has been studied in a series of work [7-14]. In this work, the dictionary is 
trained by using patches from the noisy image itself. It is important to design a suitable 
dictionary for image denoising in the process of dictionary learning. Based on the image 
denoising theory analysis, we propose a novel dictionary learning method called improved 
sparse coding (ISC), which can effectively restrain the noise among the dictionary. 
Through mathematical derivation of equation, we find that a lower bound of dictionary is 
related with the level of noise in dictionary learning process. Inspired by the idea that the 
data of similar type can be effectively represented by a complete dictionary, a remedy to 
the above problem, however, is simple and also intuitive. That is to use a cluster method. 
The K-means algorithm has been tested to be an effective method. By employing K-means 
algorithm, ISC can be used to train a complete dictionary in each class, utilizing these 
complete dictionary for getting an over-complete dictionary. Our main contribution is to 
find that a lower bound of dictionary is related with the level of noise, and design a 
dictionary learning method with the purpose of image denoising. We get through two 
aspects to test that our method is reasonable: 1) giving detailed algorithm theory analysis 
that contains strictly mathematical derivation; 2) a lot of experimental results also test our 
conclusion. 

The rest of the paper is organized as follows. Section 2 describes ISC algorithm and 
gives detailed theory analysis. Section 3 shows that ISC is applied in our denoising 
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algorithm. In Section 4, we show some experimental results that test the effectiveness of 
this algorithm. Section 5 summarizes and concludes our work. 

2 Improved Sparse Coding 
In this section, we first briefly review a traditional dictionary learning algorithm. Given 
only unlabelled data, it discovers basis functions that search higher-level features in the 
data. Our algorithm named improved sparse coding (ISC) mainly improves the algorithm 
in [15] proposed by Honglak et al.. Let	ܺ ∈ ܴே×௅	 be the input matrix (each column is an 
input vector), let	ܦ ∈ ܴே×ெ be the basis matrix also called dictionary (each column is a 
coefficient vector), and let ܵ ∈ ܴெ×௅  be the coefficient matrix (each column is a 
coefficient vector). The optimization model about sparse coding is   ܦ෡ = ܺ‖min஽,ௌ݃ݎܽ − ଶଶ‖ܵܦ + ߣ ‖ܵ‖ଵ 

s.t.         ‖݀௜‖ଶଶ ≤ ܾ,				݅ = 1,⋯  (3)                                          .ܯ,
In the model (3),  ܮଵ  norm is to guarantee sparsity, and ܮଶ  norm limitation on the 

columns of ܦ can remove the scaling ambiguity, ݀௜  denotes the i-th column of	ܦ. This 
particular formulation has been extensively studied [7, 15, 16].  

This paper considers the noise influence, thus we consider adding additive restraints for 
getting a suitable dictionary for denoising. The input vector ݔ௜ can be represented by ߙܦ௜, 
i.e., ݔ௜ = ௜ݕ	  ௜. So (2) is rewritten byߙܦ = ௜ߙܦ +  ௜.                                                      (4)ߟ

For simplicity, ܦ  is assumed to be an invertible matrix, i.e., ܦ ∈ ܴே×ே . This 

assumption doesn’t affect the theory analysis. So we get the noise coefficient as ߙො௜ = ௜ݕଵିܦ = ௜ߙ +  ௜,                                             (5)ߟଵିܦ

where ିܦଵߟ௜ is considered as the noise term, its covariance matrix ܥ is  ܥ = (௜ߟଵିܦ)ݒ݋ܥ = E[ିܦଵߟ௜ߟ௜் = [்(ଵିܦ) ௜்ߟ௜ߟ]ଵEିܦ	  (6)                                                           , ்(ଵିܦ)[

where E[ ∙ ] denotes the expected value, ܶ  represents transposition. In this paper, we 
consider two different noises. 

1) Additive noise. If the noise is constant and uncorrelated, E[ߟ௜ߟ௜் ] is a diagonal matrix, 

and can be represented by ߪଶܫ, i.e. 

                                                        E[ߟ௜ߟ௜் ] =  (7)                                                         ,ܫଶߪ

where	σ is the standard deviation of the noise, ܫ denotes unit matrix. The equation (6) 
can be rewritten as ܥଵ =  (8)                                                   .்(ଵିܦ)ଵିܦଶߪ

2) Multiplicative noise. This covariance of this kind of noise is direct proportion to 

original image, i.e., 

                                                 E[ߟ௜ߟ௜் ] =  (9)                                                  ,[௜ݕ]݃ܽ݅݀ܭ
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where ܭ is constant.  Hence, we get 

ଶܥ                                              	=  (10)                                          .்(ଵିܦ)[௜ݕ]݃ܽ݅݀	ଵିܦܭ

If we assume that the noises of different type are statistically irrelevant, E[ߟ௜ߟ௜் ] can be 

divided into two parts ܥ = ଵܥ + ଶܥ = ்(ଵିܦ)ଵିܦଶߪ	 +  (11)                 .்(ଵିܦ)[௜ݕ]ଵ݀݅ܽ݃ିܦܭ	

In order to measure the level of image noise, we need consider the sum of the diagonal 

element of the covariance matrix ܶ[ܥ]ݎ = σଶܶݎ[ିܦଵ(ିܦଵ)୘] +  (12)                ,[்(ଵିܦ)[୧ݕ]݃ܽ݅݀	ଵିܦ]ݎܶܭ	

where Tr denotes the trace operation. We define a variable R called relative noise level, 

and its form is  ܴ = ଶߪ/[ܥ]ݎܶ = [்(ଵିܦ)ଵିܦ]ݎܶ +  ଶ.        (13)ߪ/[்(ଵିܦ)[௜ݕ]݃ܽ݅݀	ଵିܦ]ݎܶܭ

Then according to the inequality min[ݕ௜]ܶݎ[ିܦଵ(ିܦଵ)்] ≤ [்(ଵିܦ)[௜ݕ]݃ܽ݅݀	ଵିܦ]ݎܶ 	≤ max[ݕ௜]ܶݎ[(ିܦଵ(ିܦଵ)்],   (14) 
there exists a constant ρ such that  

 (15)                             .[்(ଵିܦ)ଵିܦ]ݎρܶ = [்(ଵିܦ)[௜ݕ]݃ܽ݅݀	ଵିܦ]ݎܶ                                   
Then ܴ = ்(ଵିܦ)ଵିܦ)ݎܶ	 +  ଶߪ/[்(ଵିܦ)ଵିܦ]ݎρܶܭ

   = ଶߪ/ρܭ) +  (16)                                              .[்(ଵିܦ)ଵିܦ)]ݎܶ(1

Let ෠ܴ = ݉݅݊஽ܴ and ܦ෡ = (෡ିଵ൯்ܦ෡ିଵ൫ܦ)ݎܶ ஽ܴ, then݊݅݉݃ݎܽ = ෠ܴ/(ܭρ/ߪଶ + 1). 
Utilizing singular value decomposition method, we get ܦ = ଶߪ/ρܭ)/Then  ෠ܴ .்ܸ߉ܷ + 1) = (෡ିଵ൯்ܦ෡ିଵ൫ܦ)ݎܶ = [ଶ்ܸି߉ܸ]ݎܶ =  ෡ିଶ൧ܦൣݎܶ
                                          = ∑ ௜ିߛ ଶே௜ୀଵ ≥ 1/∑ ௜ଶே௜ୀଵߛ =  (17)                         .[෡்ܦ෡ܦ]ݎܶ/1

Where γ௜ is the eigenvalue of  ܦ෡. Thus, we can get a restraint condition as ܶݎ[ܦ෡ܦ෡்] ≥ ଶߪ/ρܭ) + 1)/ ෠ܴ.                                         (18) 

The inequality (18) has an equivalent form  	‖ܦ‖ଶଶ ≥ ଶߪ/ρܭ) + 1)/ ෠ܴ.                                            (19) 
From the formulation (19), we find that a lower bound of dictionary is related with the 

level of noise. Thus we assume each columns of the dictionary also has a lower bound 
related with noise, i.e. 

                          	‖݀௜‖ଶଶ ≥ ܽ,						݅ = 1,⋯  (20)                                           ,ܯ,
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where ܽ is a constant that is dictated by ߪ. So the optimization model called improved 
sparse coding is proposed as 

෡ܦ    = ܺ‖	min஽݃ݎܽ − ଶଶ‖ܵܦ +  ,ଵ‖ܵ‖ߣ

 s.t.     ܽ ≤ ‖݀௜‖ଶଶ ≤ ܾ,				݅ = 1,⋯  (21)                                       .ܯ,

The optimization performs in an alternative manner over ܦ and ܵ. 
1) Initialize ܦ with a Gaussian random matrix where each column is unit normalized. 
2) Fix ܦ , update ܵ by  መܵ = minௌ݃ݎܽ 	‖ܺ − ଶଶ‖ܵܦ + ߣ ‖ܵ‖ଵ,                                 (22) 

which can be solved by feature-sign search algorithm [14]. 
3) Fix ܵ, update ܦ by   

෡ܦ   = ܺ‖	min஽݃ݎܽ −   ,ଶଶ‖ܵܦ

s.t.       a ≤ ‖݀௜‖ଶଶ ≤ ܾ,				݅ = 1,⋯  (23)                                 ,ܯ,

which is a Quadratically Constrained Quadratic Programming that can be solved 
in many optimization packages. 

4) Iterate between 2) and 3) until converge. 

3 Denoising Algorithm 
In this section, we utilize the denoising framework of [5]，which proposes denoising 
algorithm by introducing how sparsity and redundancy are brought to use. First of all, we 
will describe the general idea of the proposed algorithm with an illustration shown in 
Figure 1.  
 
 

 
Figure 1: Illustration of sparse representation for image denoising. 

 
 

Let ܻ  be a noisy image. Because the denosing framework of [5] is based on the 
requirement of sparse representation, we need to get an over-complete dictionary to 
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sparsely represent each noisy image patch, this process leads to denoising result. While the 
dictionary generated by ISC algorithm is complete. With regard to this problem, we use K-
means algorithm to divide the noisy image ܻ into ሼ ଵܻ,⋯ , ௄ܻሽ. Since the elements from the 
same cluster have similar geometric structure, the corresponding complete dictionaries ሼܦଵ,⋯ , ௝ܦ  .௄ሽ are trained by ISC algorithmܦ = ฮ	min஽݃ݎܽ ௝ܻ − ฮଶଶܵܦ +  ,ଵ‖ܵ‖ߣ

s.t.        ܽ ≤ ‖݀௜‖ଶଶ ≤ ܾ,				݅ = 1,⋯ ݆			,ܯ, = 1,⋯ ,  (24)                      .ܭ

At last, an over-complete dictionary ܦ  is generated by combining these complete 
dictionaries.  

As follows, the image denoising model on the image patches is formed by solving ൛ߙො௜௝, ෠ܺൟ = ܺ‖ଵߣ	minఈ೔ೕ,௑݃ݎܽ − ܻ‖ଶଶ + ∑ ฮߙܦ௜௝ − ܴ௜௝ܺฮଶଶ௜௝ + ∑ ௜௝ฮ଴௜௝ߙ௜௝ฮߤ .        (25) 

Where Y is the noisy image and its denoised version ܺ, ܴ௜௝ is a matrix that extracts the (݆݅) block from the image, and each patch ݔ௜௝ can be represented by ݔ௜௝ = ܴ௜௝ܺ.  

In model (25), the first term is the log-likelihood global force that requires the 
proximity between the measured image ܻ and ܺ. Given a restraint, this penalty would have 
a limitation of ‖ܺ − ܻ‖ଶଶ ≤ ݐݏ݊݋ܥ ∙  ଶ. The second and third terms are the image priorߪ
which guarantees every patch ݔ௜௝  in corresponding location has a sparse representation 
with bounded error.   

When an over-complete dictionary ܦ is known, the proposed framework suggests that 
each noisy image patch could be sparsely represented over this dictionary ܦ , i.e., the 
solution of  ߙො௜௝ = ߙܦ଴    s.t.   ฮ‖ߙ‖minఈ݃ݎܽ − ܴ௜௝ܺฮଶଶ ≤ ܶ(σ)                            (26) 

is indeed sparse. The notation ‖ߙ‖଴ denotes the count of the nonzero entries in α, ܶ(σ) is 
constant dictated by σ, which stands for standard deviation of a Gaussian noise.  In this 
paper, we will make use of the orthonormal matching pursuit (OMP) to get the sparse 
coefficient. Given all αෝ௜௝ and fixed those, we turn to update ܺ. Returning to (25), we need 
to solve ෠ܺ = ܺ‖ଵߣmin௑݃ݎܽ − ܻ‖ଶଶ + ∑ ฮߙܦො௜௝ − ܴ௜௝ܺฮଶଶ௜௝ .                       (27) 

This is a common quadratic term which has a closed solution of the form ෠ܺ = ൫ߣଵܫ + ∑ ܴ௜௝்ܴ௜௝௜௝ ൯ିଵ(ߣଵܻ + ∑ ܴ௜௝்ߙܦො௜௝௜௝ ) .                         (28) 

All it says is that averaging of the denoised patches is to be completed, with some 
relaxation gotten by averaging with the noisy image. Because the invertible matrix in the 
above expression is a diagonal one, hence the calculation of (28) can be also done on a 
pixel-by-pixel basis. 

By now, we have known that the denoising algorithm needs for sparse coding of small 
patches, and averaging of their results. As follows, due to minimization of (25) is our goal, 
then this process can continue. Given the updated ܺ, we can use iterated scheme for going 
on denoising via sparse representation. While the iterative process is applied by only one 
time, this is because following iterations need knowledge of the new noise standard 
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deviation	σ, which is unknown after first updating ܺ. Finally, we propose our denoising 
algorithm below. 

 
Algorithm 1: Image denoising via sparse representation 
 
Objective: Estimate the denoised image ܺ of a noisy image ܻ form white and additive 
Gaussian white noise with standard deviation σ. 
Input:                  n: block size;                                         k: dictionary size; 

,ߣ	  λଵ: Lagrange multipliers;                       ܭ: number of classes. 

Output: Denoised image ෠ܺ. 
Initialization: Set X= ܻ; 
1) Use K-means method to divide ܺ into ܭ classes, i.e., ሼ ଵܺ,⋯ , ܺ௄ሽ; 
2) Use ISC to train dictionary in corresponding class, generating each complete 

dictionary as ሼܦଵ,⋯ , ௝ܦ :௄ሽܦ = argmin஽,ௌฮ ௝ܺ − ฮଶଶܵܦ  ଵ‖ܵ‖ߣ+

s.t.        ܽ ≤ ‖݀௜‖ଶଶ ≤ ܾ,				݅ = 1,⋯ j					,ܯ, = 1,⋯ ,   .ܭ
3) Merge these complete dictionaries ሼܦଵ,⋯ , ܦ ௄ሽ into an over-complete dictionaryܦ , 

i.e., ܦ = ⋯,ଵܦ]  .[௄ܦ,
4) Apply OMP method to approximate the solution of  

௜௝ߙ   = ߙܦ଴     s.t.      ฮ‖ߙ‖minఈ݃ݎܽ − ܴ௜௝ܺฮଶଶ ≤ ܶ(σ). 
5) Set: ෠ܺ = ൫λଵܫ + ∑ ܴ௜௝்ܴ௜௝௜௝ ൯ିଵ(λଵܺ + ∑ ܴ௜௝்ߙܦ௜௝௜௝ ). End 

4 Results 
In this section, the experimental results with our methods are shown on several test images, 
which contain animals, fruit and people. The tested noise level of each input image is all 
the same as sparse coding method [14] used in denoising experiments, so as to guarantee a 
fair comparison. 

In all experiments, the denoising process includes a sparse coding of each patch of size 
9×9 pixels from the noisy image. The number of classes ܭ is chosen heuristically to lie 
between 5 and 10, our result is obtained using 10=ܭ. The size of these dictionaries are all 
81×81 in every class, hence the over-complete dictionary used is of size 81×810. In other 
words, proposed algorithm assumes the knowledge of ߪ, this assumption is the same as [4]. 
Applying OMP method, atoms are accumulated till the average error passes the threshold, 
which is empirically chosen to be ܶ(ߪ) = (1.15 ∙  .ଶ(ߪ

Experimental results are based on simulated noise case. For this, the noisy images are 
created from original noise-free images. The noise is modelled to be zero-mean additive 
white Gaussian. For the simulated noise experiments, the parameters for our method are 
tuned to get the best possible results. Some parameters, such as ܾ = 1 ߣ , = 0.02  and ߣଵ = ߪ/50 , can be fixed. One of important parameters for our method is ܽ  for the 
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dictionary learning process. In Figure 2 and 3, the noisy parameter is set by	ߪ = 30 and the 
value of ܽ is 0.6. 

 
 

PSNR peppers baboon Parrot 
Cameraman 

1 
Cameraman 

2 

Sparse 
coding 

27.6333 22.7561 25.7651 26.0114 29.3847 

Our 
method 

27.7037 22.8115 25.8245 26.1159 29.4619 

Table 2: PSNR (dB) results of different algorithms. 
 
 

    
(a)                                (b)                                (c)                                (d) 

Figure 2: Comparison of denoising results on peppers image corrupted by additive white 
Gaussian noise of standard deviation 30: (a) Original image; (b) noisy image; (c) sparse 
coding; (d) our method. 

 
 

    
(a)                                (b)                                (c)                                (d) 

Figure 3: Comparison of denoising results on baboon image corrupted by additive white 
Gaussian noise of standard deviation 30: (a) Original image; (b) noisy image; (c) sparse 
coding; (d) our method. 

 
 

As follows, to verify proposed method is suitable for dealing with strong noise case, 
Figure 4 and 5 show two results with the standard deviation ߪ = 35, ܽ is tuned by 0.8. 
Section 2 has proved that proposed learning dictionary method can deal with some hybrid 
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noises. Proposed method is able to effectively denoise even for such a hybrid noise in 
Figure 6. The hybrid noise includes additive white Gaussian noise of standard deviation σ =20 and speckle noise of density ݀ = 	1 × 10ିଷ. The value of ܽ is set by 0.8. 

To evaluate the quality of denoised image, comparing the results will adopt both 
objective and subjective assessment criterions. Objectively, PSNR is good criterion to 
evaluate difference between the original images and the denoised results. Table 2 
demonstrates the PSNR of two different algorithms for five test images. In terms of PSNR, 
our method outperforms sparse coding method. Subjectively, according to the results of 
each Figure, it is shown that the proposed method is able to obtain better visual quality 
than sparse coding method. 
 
 

    
(a)                                (b)                              (c)                               (d) 

Figure 4: Comparison of denoising results on parrot image corrupted by additive white 
Gaussian noise of standard deviation 35: (a) Original image; (b) noisy image; (c) sparse 
coding; (d) our method. 

 
 

    
 (a)                                (b)                               (c)                               (d) 

Figure 5: Comparison of denoising results on cameraman 1 image corrupted by additive 
white Gaussian noise of standard deviation 35: (a) Original image; (b) noisy image; (c) 
sparse coding; (d) our method. 

5 Concluding Remarks 
This work takes advantage of the framework of sparse representation, leading to state-of-
the-art performance. The proposed method is based on local operations and includes sparse 
representation of each image block under one fixed over-complete dictionary. The content 
of dictionary is important for the denoising process. In this paper, we have shown that a 
dictionary learning on patches of the noisy image itself. Our main contribution is to design 
a novel dictionary learning method called improved sparse coding, which effectively 
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restrains the effect of noise. Lots of experimental results show that our method is capable 
of dealing with denosing process, even in the case of simulated as well as the hybrid noise. 

There are still several research directions that we need to consider, such as choosing 
the number of class, optimizing the parameters, replacing the OMP by a better pursuit 
technique, and more. As follows, one direction we consider is how to use our dictionary 
learning method to deal with hybrid noise more effectively. 
 
 

    
(a)                                 (b)                               (c)                                (d) 

Figure 6: Comparison of denoising results on cameraman 2 image corrupted by additive 
white Gaussian noise of standard deviation 20 and speckle noise of density 1 × 10ିଷ: (a) 
Original image; (b) noisy image; (c) sparse coding; (d) our method. 

6 Acknowledgement 
This Project is supported by the National Basic Research Program of China (973 Program) 
(Grant No. 2011CB707100), the National Natural Science Foundation of China (Grant No. 
61072093), and the Open Project Foundation of State Key Laboratory of Industrial Control 
Technology, (Zhejiang University) (Grant No. ICT1105). 

References 
[1] A. Buades, B. Coll, and J. M. Morel. A review of image denoising methods, with a new one. 

Multiscale Model. Simul, 4(2): 490-530, 2005. 

[2] C. Kervrann and J. Boulanger.Optimal spatial adaptation for patch-based image denoisng. IEEE 
Trans. Image Process., 15(10): 2866-2878, Oct. 2006. 

[3] H. Takeda, S. Farsiu, and P. Milanfar. Kernel regression for image processing and 
reconstruction. IEEE Trans. Image Process., 16(2): 349-366, Feb. 2007. 

[4] M. Elad and M. Aharon. Image denosing via sparse and redundant representations over learned 
dictionaries. IEEE Trans. Image Process., 15(12): 3736-3745, Dec. 2006. 

[5] P.Chatterjee and P. Milanfar. Clustering-based denoising with locally learned dictionaries. IEEE 
Trans. Image Process., 18(7): 1438-1451, Jul. 2009. 

[6] K.Dabov, A. Foi, V. Katkovnik, and K. O. Egiazarian. Image denoising by sparse 3-D 
transform-domain collaborative filtering. IEEE Trans. Image Process., 16(8): 2080-2095, Aug. 
2007. 

[7] B. Olshausen and D. Field. Sparse coding with an overcomplete basis set: A strategy employed 
by V1? Vis. Res. 37: 311-325, 1997. 



STUDENT, PROF, COLLABORATOR: BMVC AUTHOR GUIDELINES 11 
 

[8] K.Engan, S. O. Aase, and J. H. Hakon-Husoy. Method of optimal directions for frame design. In 
IEEE Int. Conf. Acoustics, Speech, and Signal Processing, 5: 2443-2446, 1999. 

[9] K. Kreutz-Delgado and B. D. Rao. Focuss-based dictionary learning algorithms. In Wavelet 
Applications in Signal and Image Processing VIII, 2000. 

[10] K. Kreutz-Delgado, J. F. Murray, B. D. Rao, K. Engan, T. Lee, and T. J. Sejnowski. Dictionary 
learning algorithms for sparse representation. Neur. Comput., 15(2): 349-396, 2003. 

[11] M. S. Lewicki and T. J. Sejnowski. Learning overcomplete representations. Neur. Comput., 12: 
337-365, 2000. 

[12] L. Lesage, R. Gribonval, F. Bimbot, and L. Benaroya.Learning unions of orthonormal bases 
with thresholded singular value decomposition. In IEEE Intl Conf. Acoustics, Speech, and 
Signal Processing, 2005. 

[13] Y. Tang, P. Yan, Y. Yuan, X. Li, Single-Image Super-resolution via Local Learning, 
International Journal of Machine Learning and Cybernetics, 2(1): 15-23, 2011. 

[14] M. Aharon, M. Elad, and A. M. Bruckstein. On the uniqueness of overcomplete dictionaries, 
and a practical way to retrieve them. J. Linear Algebra Appl., 416(1): 48-67, Jul. 2006. 

[15] H. Lee, A. Battle,  R. Raina, and A. Y. Ng. Efficient sparse coding algorithms. In Advances in 
Neural Information Processing Systems (NIPS), 2007. 

[16] J. F. Murray and A. C. Bovik. Mean squared error: love it or leave it? A new look at signal 
fidelity measures. IEEE Signal Processing Magazine, 26(1): 324-335, 1993. 


