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Abstract 
We present a new diffusion method for noise reduction and feature preservation. 

Presently, denoising methods commonly use a first-order derivative to detect edges in 
order to achieve a good balance between noise removal and feature preserving. 
However, if edges are partly lost to a certain extent or contaminated severely by 
noise, these methods may not be able to detect them and thus fail to preserve various 
features in images. To overcome this problem, we propose a new and more 
sophisticated feature detector by combining first- and second-order derivatives for a 
nonlinear anisotropic diffusion model. Numerical experiments show that the new 
diffusion filter outperforms many popular filters for denoising images containing 
edges, blobs and ridges and textures made of these features. 

1 Introduction 
Nonlinear diffusion is a popular denoising approach in which prior information of image 
features can be incorporated via a diffusion coefficient (DC) into the denoising processing. 
Methods based on nonlinear diffusion approaches have been applied for a variety of 
applications [1, 2, 3, 4]. In general, an edge is a fundamental feature that underlies more 
complicated features or structures in an image. The latter can be maintained as long as 
edges are preserved after a denoising process. Since edges can be characterised by a first-
order derivative (gradient), existing diffusion methods [1, 2, 3, 4] use the gradient as an 
edge detector to derive an appropriate coefficient that can reject diffusion at edges and 
permit smoothing in other places. This approach is simple but if edges are partly lost to a 
certain extent or are contaminated severely by noise, it may not be able to recover them 
and thus fail to preserve other features that are bounded by the edges. 

A natural image usually consists of many features, such as edges, blobs, ridges, and 
textures that are made of these features, for example, striped and checkerboard-like 
patterns. Blobs and ridges are also fundamental features in images, which correspond to 
circular and line-like regions that are either brighter or darker than their surroundings 
respectively [9]. Mathematically, they are better described by a second-order derivative 
rather than a first-order which measures edges. In this paper we propose a novel feature-       
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preserving denoising method by combining the first- and second-order nonlocal derivatives 
to form a new feature detector in a nonlinear diffusion model. By nonlocal derivative 
(NLD) we mean that the grayscale difference between two pixels is measured by two 
regions (patches) centred at the pixels. The use of nonlocal derivatives is inspired by the 
success of the popular nonlocal means (NLM) framework for image denoising [5, 6, 7, 8, 
11]. By combining the first- and second-order nonlocal derivatives, our new feature 
detector measures image intensity contrasts between neighbouring patches in a more 
sophisticated manner and can effectively capture fundamental features such as edges as 
well as blobs and ridges. We incorporate the new feature detector into a nonlinear diffusion 
model to form a new feature-preserving nonlinear anisotropic diffusion filter. Experimental 
results demonstrate that our denoising method can achieve a higher Peak-signal-to-noise 
ratio (PSNR) [6] and higher mean similarity index (MSSIM) [19] than several commonly 
used algorithms when applied to natural images containing a range of features and textures. 
 

2 Nonlocal Derivative 
2.1 First-order Nonlocal Difference 
We describe the concept of the nonlocal difference in a one-dimensional (1-D) image. 
Extension to the two-dimensional (2-D) case is straightforward and will be discussed later. 
Let be a 1-D scalar image defined on the discrete domain Ω and 1: ℜ→ΩI Ω∈x  is the 
pixel position, x = x1, x2, …, xN, as shown in Figure 1. For each pixel, x, we define a 
neighbourhood region, Nx , which comprises W pixels centred around x. We further define 
a patch Px, which is a vector comprising gray-level values of all pixels within the 
neighbourhood region Nx [10] 

[ ]TWWWx xIxIxIxI )(),(),(),( 2/)1(12/)1(2/)1( −+−−−−= KKP ,               (1) 

where W is assumed to be an odd number for symmetry consideration. The nonlocal 
difference between two signal samples I(xi) and I(xj) can be measured as a Gaussian 
weighted Euclidean difference [5, 6, 10, 11, 13],  
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of two vectors P  and  in a W-dimensional space, where σ is the standard deviation 
(Std) of a normalized Gaussian kernel. It is apparent that Eq. (2) involves a first-order 
difference between two vectors. For an image corrupted by noise, this nonlocal difference 
was considered to be a more reliable way to estimate I(xi) – I(xj) from the noisy samples 

Figure 1: A schematic showing nonlocal difference in one-dimensional space 
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alone [12, 13], and was used in the NLM filter for improving denoising performance of 
traditional weighted averaging filters [5, 6, 13].  

From Eq. (2) we can define a first-order nonlocal derivative (1st NLD) at pixel xi when 
xj approaches xi, 
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where is a matrix with ones on the secondary diagonal and zeros elsewhere 

and Gσ is a Gaussian kernel with Std σ. Eq. (3) involves the first-order difference between 
two adjacent patches and , as depicted in Figure 1. For the same reason 
given to Eq. (2), Eq. (3) is more reliable than the pixel-level gradient operator involving 
two pixels to measure edges under noise contamination. 
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2.2 Second-order Nonlocal Derivative 
Based on the definition of Eq. (3), we formulate a second-order nonlocal derivative (2nd 
NLD)  
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which, as shown in Figure 1, involves a second-order difference between a central patch  
and two adjacent patches. A large )(NL

2
jxI∇

When one of the two 1  NLDs fails to detect one edge of the blob due to noise 

 corresponds to a brighter (darker) central 
patch compared with its neighbours, which indicates the presence of a blob (or ridge). For 
a similar reason given to Eq. (2), Eq. (4) can provide a more reliable measurement than a 
pixel-level second-order difference, i.e., the Laplacian operator [14], for blob and ridge 
detection in the presence of noise.  

In general, responses of the 1st NLD and 2nd NLD to edges and blobs are complex, but 
the expressions can be simplified in a special case where the patch size equals the blob size, 
i.e., W = s. We use this case as an example to explain the performance of the 1st NLD and 
2nd NLD for detecting edge and blob features. Figure 2(a) draws a 1-D 8-bit image 
containing a step edge and a blob of size s = 21 pixels without and with additive white 
Gaussian noise (AWGN) of a Std σn = 40. Intensities of the blob and edge are set to be 160, 
against the backgrounds of 120. We apply Eq. (3) and Eq. (4) on the noise-free image and 
plot the responses in Figure 2(b), where the Std of the Gaussian function is set as σ→+∞ 
for simplicity. As seen from this figure, the response of 1st NLD to the edge and that of 2nd 
NLD to the blob are both uminodal and symmetric. For the step edge the peak values of 
the 1st NLD is twice higher than that of the 2nd NLD, whereas for the blob the two 
derivatives are the same. However, when the image is contaminated with noise, for the 
blob the peak values of the 2nd NLD is higher than that of the 1st NLD, as shown in Figure 
2(c). This is because 2nd NLD measures the difference of two neighbouring 1st NLDs. 

st
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Figure 2: (a) A 1-D noise-free image containing one blob and one step edge and the 
corresponding image corrupted by additive white Gaussian noise with a Std σn = 40; (b) 
The 1st NLD and 2nd NLD of the noise-free image; (c) The 1st NLD and 2nd NLD of the 
noisy image  

contamination, the 2nd NLD can still give a reasonable response if the other edge of the 
blob can be detected. Therefore, the 2nd NLD is a more robust blob detector compared to 
the edge detector (1st NLD). Finally we note that in the general cases of W ≠ s, the essential 
characteristics of the 1st NLD and 2nd NLD for edge and blob detection remains unchanged. 

   
 

second-order 

3 Feature-Preserving Nonlinear Diffusion 
In this section, we exploit a new feature detector that combines first- and 
nonlocal derivatives to form a more sophisticated feature-preserving nonlinear diffusion 
(FP-ND) compared to the traditional nonlinear diffusion model [1], 
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where the diffusion coefficient (DC) 
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I(xi, t = 0) = I0(xi) is the initial noisy image, 

2c =∇

∇ is the gradient operator and di
e

v is the 
divergence operator. The DC in Eq. (6) is a decr asing function of the two detectors. The 
weights w1 and w2 should be appropriately chosen for balancing the contributions of 1st 
NLD and 2nd NLD. We define w1 and w2 as, 
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In the vicinity of an edge, ),(,NL txI iσ∇  > ),(,NL
2 txI iσ∇ , so w1 > w2 and the 1st NLD 

 the vicinity of a blob, contributes more to the DC; in ),(,NL txI iσ
 <∇ ),(,NL

2 txI iσ∇ , therefore 
w1 < w2 and the 2nd NLD contributes more. Since the D ll i ity of both 
features and high in other regions, the diffusion (smoothing) process will be discouraged 
considerably in feature regions and encouraged in background regions, leading to a 
feature-preserving nonlinear diffusion (FP-ND) method that preserves features and 
removes noise in the backgrounds.  

Cs are sma n the vicin
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The threshold h is a parameter that determines whether a feature should be preserved in 
the diffusion process. A large h may oversmooth features whereas a small h can produce 
artefacts and unsatisfactory noise suppression. The choice of h should also reflect noise 
levels. We employ median absolute deviation (MAD) of ),(),( ,NL

2
2,NL1 txIwtxIw ii σσ ∇⋅+∇⋅ for 

a robust estimation of the diffusion threshold h [3, 6].  
A simple way to terminate the diffusion process is by fixing the number of iterations. 

In this work we utilize the mean absolute error (MAE) criterion [16] to stop the diffusion 
adaptively. The diffusion process is ceased only when the MAE reaches to a pre-specified 
small value. 

 

4 Experiments 
In this section we present visual and numerical results obtained by using our diffusion 
method, first for a 1-D image and subsequently 2-D images. In the latter case we 
incorporate the orientation of the features into Eq. (5), leading to a FP-nonlinear 
anisotropic diffusion (FP-NAD) model. We test the FP-NAD on 2-D natural images and 
compare the results with existing popular denoising methods, including PM anisotropic 
diffusion method [1], structure adaptive filter (SAFIR) [6] and block matching and 3-D 
collaborative filtering (BM3D) [8]. The last method is considered to be the best denoising 
algorithm at present [11, 12, 13]. We have not included bilateral filter [25], which can be 
seen as a special case of SAFIR [6], because reports [6, 26] have already shown that it 
underperforms SAFIR for image denoising. 

4.1 1-D Images 

We first test the FP-ND filter Eq. (5) on the 1-D noisy image of Figure 2(a). The patch size 
W is chosen as W = 21. The initial value of the diffusion threshold h is set to be h = 40, 
same as the Std σn of the AWGN in the image, and is updated using the MAD operator at 
each iteration. We first consider a special case for w1 = 1 and w2 = 0, for which the FP-ND 
Eq. (5) is reduced to a conventional edge-preserving diffusion. Figure 3(a) shows the 
results by this diffusion method in which the step edge is preserved but the blob is 
smoothed out. On the contrary, if we set w1 = 0 and w2 = 1, the FP-ND Eq. (5) is reduced 
to a blob-preserving diffusion model. Figure 3(b) shows results by this method in which 
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Figure 3: Tests on the noisy image shown in Figure 2(a). (a) Denoising result by an edge-
preserving diffusion, which is a special case of the FP-ND when w1 = 1 and w2 =0; (b) 
Denoising result by a blob-preserving diffusion, which is also a special case of the FP-ND 
when w1 = 0 and w2 =1; (c) Denoising result by the FP-ND, where w1 and w2 is calculated 
by Eq. (7).  
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the blob is preserved but the step edge filtered. 
We now apply the FP-NAD to the noisy image and show the denoising results in 

three different stages during the diffusion process in Figure 3(c). When w1 and w2 follow 
Eq. (7), the 1st and 2nd NLD play a dominating role around edges and blobs respectively in 
determining the DCs. As a result, for the initial noise image, DCs are low in the vicinity of 
both features and high in backgrounds. As such, FP-ND smoothes more heavily on the 
former regions in the initial stage while leaves the regions in the vicinity of the edge and 
blob features essentially unchanged, as shown by the black curve in Figure 3(c). As the 
image evolves during the diffusion process, the smoothing effect “propagates” towards the 
feature regions. Background regions away from the features continue to be smoothed 
during this period. The contrasts of the features thus become increasingly higher, giving 
rise to higher responses of the 1st and 2nd NLD around the edge and blob, respectively. 
Higher responses of 1st and 2nd NLD imply higher w1 and w2 respectively, so the system 
performs in a positive feedback manner, leading to more effective noise reduction and 
feature preservation in the second stage, as shown in Figure 3(c) (red curve). As noise is 
gradually removed, the difference of the images between two adjacent iterations becomes 
increasingly smaller. The diffusion process stops when the MAE is reduced to 0.01. As 
seen from Figure 3(c), the final result shows good preservation of features and reduction of 
noise compared to the noise-free image in Figure 2(a). 

 
 4.2 2-D Images 

In 2-D images, edges and ridges can have different orientations and blobs can be 
directional ellipses. To better preserve the geometric properties of these features, the 
orientations of features should be taken into account when we apply the FP-ND filter to 2-
D images. We therefore propose a spatially anisotropic nonlinear diffusion, namely 
diffusion along rather than across the principal direction of the features [17]. In this case, 
the scalar DC c in Eq. (5) should be replaced by a 2x2 diffusion tensor (DT) D, a 
symmetric and definite-positive matrix [18], 
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∂
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∇  is a vector 
whose elements are gradients at the pixel xi along the x-axis and y-axis. The DT D is 
constructed to have the same eigenvectors (V0,V1) as a structure tensor 

[17],  implying that the diffusion flux σσ ∇D is decomposed onto 
two orthonormal basis with directions across and along the principal direction of features, 
respectively. Eigenvalues of D are 
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The reason for designing Eq. (9) follows the explanation in [18]: In background regions Eq. 
(8) performs an isotropic smoothing due to λ0 ≈ λ1→1 and in the vicinity of features Eq. (8) 
performs an anisotropic smoothing along the principal direction of features due to λ0 

 
(a)                                                                (b) 

 
(c)                                                                 (d) 

 
(e)                                                                 (f) 

Figure 4: (a) A noise-free Barbara image; (b) The noisy image with AWGN of a Std σn= 25; 
(c) –(f) Denoised results by FP-NAD, PM,SAFIR and BM3D, respectively.  
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<λ1→0. 
 

4.2.1. Denoising of a Natural Image Containing Multiple Features  

We first undertake experiments on a classical image: Barbara (512x512). Figure 4(a) and 
(b) shows the noisy-free and noisy image with AWGN of a Std σn = 25. As seen, the image 
contains various features, including many edges, checkerboard-like and striped textures on 
the tablecloth and striped textures on the clothes. 

We apply the feature-preserving nonlinear anisotropic diffusion (FP-NAD) filter Eq. 
(8) to the noisy image Figure 4(b). The patch size for calculating 1st NLD by Eq. (3) and 
2nd NLD by Eq. (4) is set to be 13 × 13 pixels, which is between the smallest and largest 
widths (7 to 17 pixels) of the ridges in the image. The parameter h is chosen initially to be 
h = 25, equal to the Std σn of the noise, and is updated using the MAD operator at 
successive iterations. The diffusion process stops when the MAE is less than 0.01. The 
denoised result by our FP-NAD is shown in Figure 4(c). As seen, all features in the image 
are correctly preserved by comparing to the noise-free image Figure 4(a), including eyes of 
Barbara, weak striped textures on the clothes of Barbara and checkerboard-like textures 
on the tablecloth. 

The denoised results of the same image by PM, SAFIR and BM3D, are shown in Figure 
4(d)-(f). For PM, the time interval is set to be 0.2=Δt  and the processes stop when the 
MAE is less than 0.01. In SAFIR, the patch window is set to be 9 × 9, the maximum 
number of increments for the nested window size is 4, the critical parameters λ0.01=113.5 
and ρ = 3. The reasons for choosing these parameter values are explained in an original 
paper [6]. The parameters for BM3D used in all tests follow ‘Normal Profile’ in Table I in 
reference [8]. 

 
σn PSNR/MSSIM values

Noisy Image FP-NAD PM SAFIR BM3D
25 20.32/0.406 31.22/0.901 24.47/0.710 27.78/0.790 30.73/0.887
30 18.79/ 0.346 30.37/0.892 24.03/0.635 26.39/0.748 29.76/0.864
40 16.49/ 0.264 28.85/0.843 22.16/0.514 24.30/0.674 28.07/0.824

Table 1: Comparison of PSNR and MSSIM by our method, PM, SAFIR and BM3D. Three 
levels of AWGN with Stds σn = 25, 30 and 40 are tested. 

By a visual comparison, PM oversmoothes the eyes and almost wipes out the weak 
striped patterns on the tablecloth and trousers. SAFIR preserves the features on the trousers 
better than the PM, but still oversmoothes the eyes of Barbara and the stripes on the 
tablecloth. Our FP-NAD avoids this problem since we combine different feature detectors 
together to provide high responses on these features under noise contamination. The strong 
feature preserving ability of our method is also attributed to the unimodal shape of the 1st 
and 2nd NLD and anisotropic diffusion along the orientation of the features. Moreover, our 
method performs isotropic diffusion in background regions so remove noise and induce 
little artefacts, unlike the PM method. BM3D performs comparably with our FP-NAD in 
terms of feature preserving, but tends to have lower image contrast of the eyes and stripes 
on the trousers by comparison. We have quantified the image fidelity by calculating peak 
signal-to-noise ratio (PSNR) [6] and mean structure similarity index (MSSIM) [19] 
between original and denoised images. Higher PSNR and MSSIM imply better image 
restoration and structure preservation, respectively. We report in Table 1 the PSNR and 
MSSIM values of denoised results shown in Figure 4 by our method, PM, SAFIR and 
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(a) +∞ / 1                     (b) 8.40 / 0.223                    (c) 15.29 / 0.622        

                     
   (d) 13.43 / 0.378                  (e) 14.68 / 0.361                  (f) 14.46 / 0.484 

Figure 5.  Test on a fragment of a natural image, Parrots. (a) Noise-free image; (b) Noisy
image (σn = 120); (c) - (f) Denoised results by our method, PM, SAFIR and BM3D,
respectively. Two numbers under each image are the corresponding PSNR and MSSIM
values.  

BM3D. Table 1 also summarizes the PSNR and MSSIM for the denoised images by the 
above methods on Figure 4(a) with AWGN of Stds σn = 30 and 40. As seen, our method, 
for different levels of AWGN, achieves the highest PSNR and MSSIM value among the 
four algorithms. 

 
4.2.2 Denoising of a Natural Image under Extremely Severe Noise 

Contamination 

We further test the FP-NAD filter on a natural image under severe noise contamination. 
Figure 5(a) and (b) show a fragment of a noise-free and noisy benchmark image Parrots 
[20], which contain a blob (eye of the parrot) and several ridges (eye socket of the parrot 
and dark stripes on its face) of different sizes and orientations. Extremely high-level 
AWGN (σn = 120) is used in order to test the performance limit of the FP-NAD filter on 
low-PSNR images. Parameters of our filter, PM, SAFIR and BM3D are the same as those 
in the last test. The denoising result is shown in Figure 5(c) - (f), the two numbers under 
each figure are the corresponding PSNR and MSSIM values, respectively. As seen, due to 
the severity of noise, edges in the image Figure 5(b) are heavily broken, particularly in the 
eye region. As such, edge-preserving diffusion, such as PM (Figure 5(d)), is ineffective in 
restoring these features. PM also generates artefacts in flat regions. Visually, SAFIR and 
BM3D are shown to preserve features better than PM, but are still outperformed by the FP-
NAD, as the eye, eye socket and face stripes are partly oversmoothed in comparison to the 
result by FP-NAD. The main reason behind the good performance of our FP-NAD is again 
due to the combination of two feature detectors. Moreover, nonlinear anisotropic diffusion 
employed in our filter has the ability to effectively reconstruct the shapes of the features 

hile remove noise.  w
 
5 Conclusions and Discussion 
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We have presented a new feature-preserving nonlinear anisotropic diffusion method in 
which the diffusion coefficient is constructed by a combination of different feature 
detectors. We have tested the new algorithm on 1-D and 2-D images and demonstrated 
good performance in preserving edges, blobs, ridges and textures. It can also effectively 
reduce the background noise and create minimal artefacts. 

A key issue in our FP-NAD filter is the formation of DC by using a combination of 1st 
NLD and 2nd NLD, which provides improved detection performance on edge, blob and 
ridge features. The NAD process controlled by this DC can therefore smooth out noise 
while preserve features. We note that our work provides a general diffusion framework 
under which multiple feature detectors can be combined into the diffusion model. A range 
of choices of these detectors are already available in the fields of image processing and 
computer vision [15, 21, 22, 23, 24]. A future direction of our work is therefore to study a 
more comprehensive set of feature detection operators in the feature-preserving denoising 
for a wide range of applications. The work will also focus on optimizing system 
parameters such as the patch size W and the iteration number in order to maximize the 
performance of the FP-NAD. 
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