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Abstract

Active Shape Models are some of the most actively researched model-based seg-
mentation approaches. An accurate estimation of the shape probability distribution is
essential to provide the prior knowledge that makes ASMs able to handle the large in-
herent variability of anatomical structures, differentiating between allowed and invalid
instances. Under the typical assumption of normality the subspace of allowed shapes
(SAS) is confined within a hyperellipsoid. Although the approximation of the SAS by a
hypercube provides computational advantages, this simplification allows the occurrence
of highly improbable instances. In addition, a high dependency on the rest of the con-
figuration parameters is observed when the general segmentation algorithm incorporates
the hypercube simplification. In this work, a new, efficient hyperelliptical approximation
of the SAS based on the Newton-Raphson optimisation method is presented. To perform
a detailed comparative study of the effect that four different SAS estimation approaches
have on the general segmentation process, a generalisation of the typical two-factor fac-
torial design is used on two different image databases. The results obtained by means of
this statistical technique not only reveal the superiority of the new hyperelliptical method
in terms of both accuracy and robustness but also provide information of great interest
for optimising the segmentation process.

1 Introduction

Since their inception in the early nineties with the seminal work of Cootes et al. [16], Active
Shape Models (ASMs) have become one of the most popular segmentation paradigms. Their
potential robustness against noise and image artefacts, their versatility and their ability to
model the patterns of variability of the shapes of interest in a simple and elegant way, have
contributed significantly to the widespread use of this segmentation technique [1, 4, 7, 10,
15, 17].

Roughly, ASMs consist of learning the population statistics of a training set of examples
and estimating not only the particular patterns of variability of the shape of interest, but also
the appearance model around each point used to describe it, called a landmark. The statistical
models of shape and appearance are combined into an iterative algorithm that conjugates the
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Figure 1: Unlike the hyperrectangle simplification (red) that provides very different shapes
when applying slight variations in the parameter settings (params. config. 1: (a) and (c);
params. config. 2: (b) and (d)), the results obtained with the hyperelliptical approach (green)
present a much smaller variation. For clarity, the target shape (black) is also shown in figures
(c) and (d).

adaptability of the landmarks with the shape restrictions imposed by a subspace of allowed
shapes, which we refer to hereafter as SAS. The subspace provided by a good estimation of
the shape probability distribution is of great importance in the optimisation of the segmenta-
tion process because it directly conditions the evolution of the algorithm. The SAS must be
sufficiently restrictive to prevent the appearance of incoherent cases that differ significantly
from those examples observed in the training set, but also general enough to include new,
valid, unseen shapes.

A widespread simplification when building the aforementioned subspace of shapes is to
approximate it by a hyperrectangle space, applying hard limits independently to each com-
ponent of the shape. The acceptable behaviour of the algorithm and the great simplification
of the shape-correction step have contributed to the generalisation of this approximation
being systematically adopted in most subsequent publications based on ASMs. However,
aware of the potential inaccuracies of this hyperrectangular simplification, Stegmann [13]
proposes an alternative approximation for the SAS by defining a hyperelliptical space. Al-
though this is in general a better estimation for the shapes distribution, those instances that
fall out of the SAS are corrected by simply scaling them instead of calculating the closest
point in the “surface” of the hyperellipsoid, a simplification that can introduce new inaccura-
cies in the segmentation algorithm. A more sophisticated alternative is proposed by Cootes
and Taylor [3] who represent the SAS as a mixture of Gaussians that approximates the ac-
tual probability density function of the shapes. Unlike previous approaches that assume the
continuity of the SAS, this new method makes it possible to deal with those cases in which
the subspace contains illegal regions within it. Despite its potential usefulness for certain
particular situations, it becomes unnecessary for most practical cases in which the SAS can
be accurately approximated by a hyperellipsoid.

The present work proposes a new shape constraint strategy based on the hyperelliptical
approximation of the SAS. In this new method, those shapes out of the space are efficiently
approximated by the nearest point of the SAS, minimising the additional distortions intro-
duced by Stegmann’s simplification [13] and thus improving the segmentation accuracy.
This optimisation problem is solved by means of a fast convergence algorithm, such as the
Newton-Raphson method.

To demonstrate the improvement in the segmentation process provided by this new shape
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constraint strategy, a typical procedure could be adopted, comparing its accuracy with the
aforementioned alternatives for a certain experimental set-up. However, from a more rigor-
ous point of view, considering the SAS approximation strategy as an independent factor of
the algorithm, the effect of which is only appreciated in terms of the final segmentation ac-
curacy, is not entirely correct. Like many others high-level segmentation approaches, ASMs
are controlled by a set of configuration parameters that must be properly tuned to optimise
the results for a particular application. Some of these parameters, such as the degree of flexi-
bility of the shape model, are directly linked to the SAS approximation adopted, while others
are related to the appearance model. However, as part of an iterative algorithm, the approx-
imation of the SAS and thus the shape constraint strategy adopted will have a direct impact
not only on the accuracy of the segmentation but also on the response of the algorithm to
different values of the rest of parameters, as Figure 1 illustrates.

Next to the presentation of the new hyperelliptical SAS approximation, one of the main
goals of this paper is to present a detailed study of the effect that the multiple configuration
parameters have on the behaviour of the segmentation algorithm. Using an extension of the
widespread two-factor factorial design, the general factorial design allows us to analyse not
only the isolated effect of each parameter but also the degree of interaction between them,
which is of crucial importance when trying to optimise the algorithm configuration.

2 Active Shape Models

As was pointed out in the Introduction, ASMs consist of two different statistical models.
The information from the two models is combined into an iterative process, leading to one of
the most popular segmentation paradigms of the last several years. The statistical appearance
model guides the matching process of the shape to a new image, whereas the statistical shape
model applies shape constraints to guarantee that only plausible instances are generated.

2.1 Statistical Shape Model

The purpose of the statistical shape model is to estimate the population statistics from a set
of examples via the Point Distribution Model (PDM), learning the particular patterns of vari-
ability of the structure of interest. Suppose X; represents the vectorial expression of the i-th
training shape (i =1, ..., N), created by concatenating the coordinates of the K d-dimensional
landmarks (d = 2 or 3) that compose it. That is, x; = (x1717,<, s X L X LK iy e ,xd,K’,-)T.
Using a generalisation of the Procrustes alignment method (GPA) [5], the set of shapes are
aligned to a common coordinate frame to remove those shape variations that might be due
to differences in pose, i.e., translation, rotation and scaling. The statistical shape model is
built by applying Principal Component Analysis (PCA) to the deviation of the aligned exam-
ples from the mean shape, X, obtained by simply averaging over all N aligned shape vectors.
Retaining the ¢ principal eigenvectors, that is, those linked to the r main eigenvalues, it is
possible to reduce the dimensionality of the problem from dK to ¢, approximating each in-
stance of the shape space by the linear equation x = X+ Pb, where P = (p; | p, | ..- | p;)
is the (dK x t) matrix created from the concatenation of the eigenvectors selected, and the
vector b = (by,by,...,b;)7 is the expression of the shape x in the new coordinate system de-
fined by P. By suitably constraining the values of b, a subspace of allowed shapes is created
guaranteeing that only plausible shapes are generated. Different alternatives to model this
subspace are detailed in Section 3 next to the presentation of our new hyperelliptical model.
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2.2 Statistical Appearance Model

During the matching process of a new image, each landmark must look for its optimal loca-
tion according to a particular appearance pattern extracted from the training set. Typically,
this appearance model is based on the normalised first derivative of fixed-size gray profiles,
normal to the boundary or the object and centred at each landmark. Under the assumption
that these gray profiles come from a multivariate Gaussian distribution, the optimal loca-
tion for each landmark is that where the appearance information minimises the Mahalanobis
distance to the mean profile of the training set. This image-driven update of landmarks is
alternated with a shape adjustment step, where the resultant b is calculated and constrained,
in the iterative segmentation process. It is worth noting that even when a simple appearance
model is used, certain configuration parameters exist that must be properly tuned, such as
the length of the gray profile or the searching range in which each landmarks looks for its
best position. The robustness of the algorithm for small variations of these values will be
discussed in Section 4.

3 Modelling the Subspace of Shapes

Suppose y is the shape provided by the landmarks updating process described in Section 2.2
expressed in the coordinate frame of the statistical shape model. Because the eigenvectors
form an orthonormal basis, it is possible to obtain the corresponding shape vector of y as
b, = P’ (y —X), which must be properly constrained according to the modelling of the SAS
(see Figure 2(a)). One of the simplest and most widespread techniques is to apply hard limits
independently to each component of by with | b; |[< B+/A; (j = 1,...,1), that is, approximat-
ing the SAS to a hyperrectangle (b, ~ bgg). The parameter 3 is a constant that determines
the flexibility of the model, typically between 1 and 3. Despite its simplicity and reduced
computational cost, this very simple approximation can lead to highly unlikely instances,
such as those in which every component takes the extreme value +f \//Tj In general, and
especially when dealing with anatomical structures, a more accurate representation of the
SAS can be obtained if considering the different instances of the shape are distributed ac-
cording to a multivariate normal distribution. Under this assumption, the aforementioned
limits of b; define a hyperelliptical constant potential surface as

t b?
() -

However, instead of calculating the point of the hyperellipsoid closest to by, i.e., by, the
constraint method proposed by Stegmann [13] consists of simply scaling those shape vec-
tors out of the SAS, correcting b, by bg. Although this technique prevents the occurrence
of such highly improbable instances as the extreme cases allowed by the hyperrectangular
approximation, it can cause undesirable collateral deformations that negatively affect the
segmentation process. Figures 2(c) and 2(d) show the shapes obtained when applying the
scaling and the optimal hyperelliptical corrections, respectively, over the extreme case illus-
trated in Figure 2(b). While the latter provides that “legal ”” shape nearest to the original one,
that is, minimising the unnecessary deformations, it can be appreciated how next to the cor-
rection in the mouth the scaling also introduces significant alterations in the nose and eyes.
As part of an iterative algorithm that alternates the landmark updating process with a shape
constraint step, the goal of the shape constraint step is to prevent the occurrence of incorrect
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Figure 2: (a) A graphical illustration (for the simplified case where ¢ = 2) of three dif-
ferent shape constraint strategies. bgyg, bs and byg represent the corrections provided by
the hyperrectangle projection, the scaling proposed by Stegmann [13] and the new hy-
perelliptical approximation respectively. (b) An example of the extreme shape instance
bj =2/A; (j=1,....t; = 2) considered as plausible instance by the hyperrectan-
gle approximation. (c) The shape corrected by the simple scaling approach proposed by
Stegmann [13]. (d) The shape corrected using the new hyperelliptical method.

or unallowed shapes while preserving most of the information provided by the landmark up-
dating process. Any inaccuracy or additional deformation introduced by the shape constraint
strategy directly affects the evolution and final accuracy of the segmentation process, as is
described in Section 4.

3.1 Hyperelliptical Correction

Contrary to the argument that Heap and Hogg [6] used against a hypothetical hyperellipti-
cal fitting, it is not necessary to use an expensive optimisation algorithm such as gradient
descent. Faster alternatives such as secant method or Newton-Raphson optimization algo-
rithm [2] are also possible. In particular, we propose the use of a faster convergence approach
based on the Newton-Raphson optimisation method. Suppose by g represents that point over
the hyperellipsoid “surface” closest to by. This can be expressed by the following system of

equations
t b;'IE j
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Both equations can be combined into the following single objective function to optimise
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The initial #-dimensional optimisation problem has been simplified to f(a) = 0, which can
be easily solved by the Newton-Raphson method as follows

_df & 2biBRA

flla)=—2 ——gi(ﬁzliwﬁ (6)
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The fast convergence of this method makes its application possible in high-dimensionality
environments, that is, with a large number of eigenvectors. Undoubtedly and despite its fast
convergence this new hyperelliptical approach is more computationally expensive than the
hard limits imposed by the hyperrectangular approximation or the simple scaling correction
of Stegmann [13], though not as expensive as the weighted sum of Gaussians [3]. However, it
is worth noting that this slight increase in the computational cost of the shape constraint step
will have a minimal impact on the overall segmentation time. As Sukno et al. [14] points out,
the speed of the algorithm is directly conditioned by the number of landmarks in the model,
and the landmark actualisation process is the most expensive step in the algorithm.

4 Experimental Study through General Factorial Design

Next to the presentation of the new hyperelliptical fitting method, the other main goal of this
paper is the introduction of a detailed and rigorous experimental study that makes it possible
to evaluate the actual differences between alternative shape constraint techniques, paying
attention not only to the accuracy but also the effect on other configuration parameters and
the potential interactions between them. Interesting and useful insights may be drawn from
this study, such as the robustness of the algorithm to small variations in the parameters or the
use of an optimal tuning process to achieve the best segmentation results.

The study will be performed over two different databases, the AR facial database [8]
and the JSRT chest radiographs database [11]. The AR database consists of 532 images
containing 4 different facial expressions of 75 men and 58 women. The JSRT database
includes 247 chest radiographs, comprising 154 patients with one pulmonary lung nodule
and 93 healthy cases. For each database, the images have been symmetrically split into two
sets of equal size with the same proportion of male and female faces for the AR database
and healthy cases and cases with lung nodules for the JSRT database. One of the two sets
is used as a training set to building the statistical models of shape and appearance, while the
remaining cases that form the test set are used to evaluate the segmentation algorithm. Both
databases have been manually delineated by experts providing a reference ground truth to
calculate the segmentation error.

Suppose now we want to address the segmentation of any of the two aforementioned
databases using ASMs. For a standard statistical shape model and the simple appearance
model detailed in Section 2.2, three principal configuration parameters can be distinguished,
namely, the flexibility of the model (f), the length of the grey profile (y), and the searching
range in the landmark updating process (8). The goal of this Section is to analyse, by means
of general factorial design, the effect that these parameters or factors have over the final
response of the algorithm when using different shape constraint techniques. Factorial design
is one of the most efficient statistical tools for studying the effect and interaction of two
or more factors within a system; the effect of a factor is defined as the change in response
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Figure 3: (a) Four facial expressions of the AR database. (b) The variability pattern con-
trolled by the first eigenvector of the shape model. (c) The probability density estimation of
the first components of the shape vector b.

produced by a change in the level of the factor [9]. In particular, the values considered for
each parameter are as follows: four values for 8 (1.5, 2, 2.5, 3); seven different lengths for
the appearance profile ¥, expressed in pixels to each side of the landmark (3, 4, 5, 6, 7, 8, 9);
and four search ranges, &, expressed as pixels to each side of the full appearance profile (2,
3,4, 5) for a total of 112 different parameters configurations.

Next to the new hyperelliptical approach introduced in Section 3.1, two of the most
popular shape constraint strategies are considered in the study: the typical hyperrectangular
approximation and the scaling correction proposed by Stegmann [13]. Although these are
three valid approximations of the SAS under the assumption of continuity, the four particular
facial expressions of the AR database introduce an interesting discontinuity in the space of
plausible shapes that allows us to consider also a fourth SAS estimation approach. As Figure
3(a) illustrates, the linkage between the mouth and the eyes is one of the main patterns of
variability of the shape model, which is mostly described by the first eigenvector (see Figure
3(b)). The absence of intermediate configurations between the open eyes - closed mouth
expressions and the closed eyes - open mouth case is reflected in the observed distribution of
by, which is significantly different from the rest of the components (see Figure 3(c)), creating
a discontinuity in the SAS, as Figure 4(a) illustrates. To better characterise this particularity,
the alternative proposed by Cootes and Taylor [3] is also tested, approximating the distri-
bution of the shape space as the weighted sum of two Gaussians. As can be appreciated in
Figure 4(b), this approach is unnecessary for the JSRT database; the hyperelliptical fitting
seems to successfully model the SAS.

Before comparing the different SAS approximation alternatives and the effect that each
factor has on the segmentation accuracy, it is convenient to formulate and test hypotheses
about the main effects and interactions of these factors by mean of the ANOVA. The results
of these test statistics allow us to ascertain whether the factors considered have a significant
effect on the accuracy of the algorithm and whether any kind of interaction between factors
is present, that is, if the effect of one factor, say 3, is conditioned by any other factor, y or
6. In general, the three factor analysis of variance model [9] can be expressed as Vijen =
K+ Up; + Wy, + U, + By, + Bps, + Hys, + HBys + €s where i=1,...,4, j=1,...,7,
k=1,....4,andn=1,...,N; y,,, is the segmentation error of the ijkn-th observation; p
is the overall mean common to all cases; [ig,, lly; and [ represent the main effect of the
i, j and k - th tested value of the factors B, ¥ and & respectively; ligy,., Ugs, and My
reflect the interaction effect between pairs of factors and HBys; ;i is the interaction between
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Figure 4: Probability density estimation (pdf) using an adaptive kernel method [12] and the
SAS approximations under study (simplification for »; and b,): (a) The AR database. (b)
The JSRT database.

all of them; and ¢, ,, is the random error component of the i jkn-th observation. The subindex
n corresponds to the n-th shape tested, N = 234 and N = 123 for the AR and the JSRT
database respectively.

The F-tests on the main effects and the interactions at the typical 5% significance level
have revealed that, while an appreciable influence of the factors exists separately, the inter-
action effects between them are not statistically significant. This important result has been
observed for all of the SAS estimations under study and for both databases tested, so the
model equation can be simplified as y,,, = 1+ Up, + Ly, + U, + €, This absence of cross
influence between the factors indicates that, whatever influence a certain factor has on the
behaviour of the segmentation process, this trend is not affected by any other factor under
consideration. This revealing outcome is of crucial importance when trying to optimise the
ASM configuration, making it unnecessary to carry out costly pilot experiments that take into
account all possible combinations of the factors that must be tuned. Thanks to the above re-
sult, the optimisation of each factor individually will deal with the overall optimal behaviour
of the algorithm.

The graphics presented in Figures 5 (a) and (b) graphically illustrate the tendency of the
average segmentation error when varying each configuration parameter, i.e. 8, y or 8, for
the AR and the JSRT databases respectively. When comparing shape constraint techniques,
it is interesting to notice the systematic improvement provided by the new hyperelliptical
approach, which produces better results than the classic hyperrectangular fitting. Even more,
the slope of these graphics also reveals the great robustness of the hyperelliptical fitting with
respect to the parameters; the tolerance to variations in 8 is particularly significant. That
is, the response of the new shape constraint approach is slightly conditioned by the value of
B defined. In contrast, the scaling correction proposed by Stegmann [13] yields the worst
behaviour. Despite the fact that this approach was originally conceived as a refinement of
the classical approach, these results show how the hyperrectangular approximation performs
better than Stegmann’s method, as Heap and Hogg [6] pointed out. In contrast to the hy-
perelliptical fitting that prevents the occurrence of invalid extreme cases by minimising the
Mahalanobis distance, the scaling correction entails significant collateral deformations (see
Section 3) that adversely affect the evolution of the algorithm. The behaviour exhibited by
the weighted sum of Gaussians approach of Cootes and Taylor [3] is very similar to the one
provided by the hyperelliptical estimation, despite implementing a more sophisticated and
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Figure 5: Plots of the main effects that each of the three parameters tested, flexibility (),
appearance profile length () and searching profile length (8), over the average segmentation
error (pixels).

Hyperellipsoid | Hyperrectangle | Scaling corr. | Sum of Gaussians
AR 2.8+£2.2 33+£22 3.8+23 3.1£23
JSRT 1.94+0.8 2.14+0.8 24+14

Table 1: The Average segmentation error (i £ o pixels) for the optimal parameters configu-
ration.

precise estimation of the SAS. Although it may be useful in certain contexts such as those
described in [3], in practice, the landmark updating process also contributes significantly to
confining the shape instances within the two “legal”’subsections in which the SAS of the AR
database can be divided (see figure 4(a)). That is, the appearance model allows the land-
marks to adequately differentiate between the open eyes - closed mouth expressions and the
closed eyes - open mouth case. Thus no additional improvement is provided by the weighted
sum of Gaussians method.

In view of the monotonic trend that the segmentation error shows with the parameters
(see figure 5), it is immediately possible to deduce the optimal configuration that provides
the lowest segmentation error. For instance, the configurations (f =3, y=9, § = 5) and
(B=1.5,y=9, 8 = 5) will provide the optimal behaviour for the hyperelliptical and hyper-
rectangular fitting, respectively, for the AR database. Table 4 summarises the optimal results
for each one of the shape constraint strategies.

5 Conclusions

In this work we present a new efficient hyperelliptical approximation to model the SAS from
a population of training shapes. As is demonstrated in the article, the effect of the SAS
approximation is not only limited to the final segmentation error but also to the robustness of
the algorithm with respect to the different configuration parameters. To carefully compare
the behaviour of the new hyperelliptical fitting with three typical SAS estimation alternatives,
i.e., the widespread hyperrectangle, the scaling correction, and the mixture of Gaussians, a
generalisation of the well-known two-factor factorial design is used in two different images
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databases, the AR facial database and the JSRT chest radiographs database. This statistical
analysis provides us the opportunity to study the effect that the three main configuration
settings, namely, the flexibility of the model, the length of the appearance model, and the
searching range in the landmarks updating process, have over the segmentation process when
using each one of the SAS approximations tested.

The results provided by this general factorial design demonstrate how the use of the
new hyperelliptical fitting not only improves the average segmentation accuracy but also
the robustness of the algorithm to variations of the configuration settings, especially of the
flexibility of the statistical model, which is directly linked to the SAS approach used. On the
other hand, the F-test performed at the typical 5% significance level revealed the absence of
interaction effects between the parameters, a result of crucial importance in the optimisation
of the segmentation process.
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