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Since their inception in the early nineties with the seminal work of Cootes
et al. [5], Active Shape Models (ASMs) have become one of the most
popular segmentation paradigms, thanks to their robustness and versatil-
ity. Basically, the ASM algorithm can be described as an iterative pro-
cess in which two statistical models are sequentially applied to drive the
segmentation process. A statistical appearance model guides the match-
ing process of the shape to a new image, whereas a statistical model of
shape imposes shape restrictions defining a subspace of allowed shapes
(SAS). The SAS must be sufficiently restrictive to prevent the appearance
of incoherent cases, but also general enough to include new, valid, unseen
shapes.

In the context of ASM, the vectorial expression of each instance of
the shape space, x, is created by concatenating the coordinates of the K
d-dimensional landmarks used to described it. Each shape is approxi-
mated by the linear equation x = x+Pb, where x is the mean shape and
the vector b = (b1,b2, ...,bt)

T is the expression of the shape in the new
coordinate system defined by the t main eigenvectors of the covariance
matrix of the training set, P = (p1 | p2 | ... | pt). One of the most simplest
and most widespread techniques to guarantee that only plausible instances
are generated is to apply hard limits independently to each component of
b, with | b j |≤ β

√
λ j ( j = 1, . . . , t), approximating the SAS to a hyper-

rectangle, b ≃ bHR (see Figure 1). The parameter β is a constant that
determines the flexibility of the model, typically between 1 and 3. How-
ever, this very simple approximation can lead to highly unlikely instances,
such as those in which every component takes the extreme value ±β

√
λ j.

A more accurate representation of the SAS can be obtained if considering
the different instances of the shape are distributed according to a multi-
variate normal distribution, defining a hyperelliptical constant potential

surface as (∑t
j=1

b2
j

β 2λ j
)−1 = 0. Instead of calculating the point of the hy-

perellipsoid closest to b, the constraint method proposed by Stegmann [4]
consists of simply scaling those shape vectors out of the SAS, correct-
ing b by bS (see Figure 1). Although this approximation prevents the
occurrence of such highly imporbable instances as those allowed by the
hyperrectangular approximation, it can cause undesirable collateral defor-
mations that negatively affect the segmentation process.

In this work, a new, efficient hyperelliptical approximation of the SAS
is presented. Suppose bHE represents that point over the hyperellipsoid
"surface" closest to b. This can be expressed by the following system of
equations, 

(∑t
j=1

b2
HE, j

β 2λ j
)−1 = 0

min
(

∑t
j=1(bHE, j −b j)

2
) (1)

Both equations can be combined into the following single objective func-
tion to optimise

F(bHE ,α) =
t

∑
j=1

(bHE, j −b j)
2 +α

((
t

∑
j=1

b2
HE, j

β 2λ j

)
−1

)
(2)

which can be easily and efficiently solved by the Newton-Raphson method.
Next to the presentation of this new hyperelliptical fitting method,

the other main goal of this paper is the introduction of a detailed and
rigorous experimental study that makes it possible to evaluate the ac-
tual differences between alternative shape constraint techniques, paying
attention not only to the accuracy but also the effect on other configura-
tion parameters and the potential interactions between them. In particu-
lar, the values considered for each parameter are as follows: four values
for β (1.5, 2, 2.5, 3); seven different lengths for the appearance profile
γ , expressed in pixels to each side of the landmark (3, 4, 5, 6, 7, 8, 9);
and four search ranges in the landmark updating process, δ , expressed
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Figure 1: A graphical illustration (for the simplified case where t = 2)
of three different shape constraint strategies. bHR, bS and bHE repre-
sent the corrections provided by the hyperrectangle projection, the scal-
ing proposed by Stegmann [4] and the new hyperelliptical approximation
respectively.

as pixels to each side of the full appearance profile (2, 3, 4, 5), for a
total of 112 different parameters configurations. The three factor analy-
sis of variance model [2] that express the effect that these parameters of
factors have over the final response of the algorithm can be defined as
yi jkn = µ + µβi

+ µγ j + µδk
+ µβγi j

+ µβδik
+ µγδ jk

+ µβγδi jk
+ εi jkl , where

i = 1, . . . ,4, j = 1, . . . ,7, k = 1, . . . ,4, and n = 1, . . . ,N; yi jkn is the seg-
mentation error of the i jkn-th observation; µ is the overall mean common
to all cases; µβi

, µγ j and µδk
represent the main effect of the i, j and k

- th tested value of the factors β , γ and δ respectively; µβγi j
, µβδik

and
µγδ jk

reflect the interaction effect between pairs of factors and µβγδi jk
is

the interaction between all of them; and εi jkl is the random error compo-
nent of the i jkn-th observation. The subindex n corresponds to the n-th
shape tested.

Using two different databases, the AR facial database [1] and the
JSRT chest radiographs database [3], the results provided by this gen-
eral factorial design demonstrate how the use of the new hyperelliptical
fitting not only improves the average segmentation accuracy but also the
robustness of the algorithm to variations of the configuration settings, es-
pecially of the flexibility of the statistical model, which is directly linked
to the SAS approach used. On the other hand, the F-test performed at the
typical 5% significance level revealed the absence of interaction effects
between the parameters, a result of crucial importance in the optimisation
of the segmentation process.
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