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Human pose estimation is a vivid topic in current literature due to its
wide-spread applications such as motion-capture, telepresence or object
manipulation in virtual environments. The process of human pose estima-
tion is concerned with finding the pose parameters of a human body model
that best fit to the observations in one or more input images. There exists a
variety of algorithms that solve this task with high accuracy from multiple
input images, depth images or even a single photograph. Unfortunately,
these systems often require manual initialization and cannot process im-
ages at interactive frame rates. Often this can be overcome by learning
poses from thousands of examples or fitting a rigid body part model to
the data. However, model fitting algorithms are easily distracted by miss-
ing or spurious body-parts and depend on a good initialization. Therefore
there is need for improvement in real-time body pose estimation methods
to handle the full articulation space of the human body, support automatic
single-frame initialization and tolerate outliers.
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Figure 1: Extracting the human skeleton starting from silhouettes.

In this paper, we present a novel marker-less human pose estimation
algorithm which uses a skeletal graph extracted from a volumetric rep-
resentation of the human body. The skeletal graph is a tree that has the
same topology as the human body (i.e. arms, legs and body). We generate
this graph efficiently using a center-line tracing algorithm [3] applied on
voxel data. As the center-line extraction produces spurious branches, we
employ a novel pose-independent graph matching algorithm based on [1]
which robustly labels graph end-nodes into head, hands and feet while
ignoring such end-nodes that do not correspond to any valid limb. Our
graph matching uses geodesic distances between each end-node of the
graph and the head-node as features and matches them using dynamic pro-
gramming. The labeled nodes allow for a good initialization of a human
skeleton model. We optimize this model using a fast local optimization
similar to [2] and ensure that all joints lie close to the skeletal graph and
bones maintain the correct lengths. A graphical summary of our algorithm
is shown in Figure 1.
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Figure 2: Statistics of the position estimation error for all joints (a). Dis-
tance between the estimated hand position and ground-truth over time (b).
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In order to evaluate our approach, we render a polygon model that
is animated by motion capture data from multiple views. This is how
we obtain silhouettes and ground-truth joint positions in almost twenty-

thousand frames. In Figure 2(a) we show that we are able to achieve an
average joint position estimation error of around 50 mm in all of these
frames. We do not perform any post-processing or tracking of joint posi-
tions over time but emphasize the importance of single-frame detection.
Compared to systems that rely on tracking information, we can provide
long-term skeleton tracking and do not get stuck in a wrong pose for a
long time. Figure 2(b) shows how our algorithm automatically recovers
from false estimations of the left hand position.

Figure 3: Examples of human pose estimation on real data.

We demonstrate the quality of our graph based tracking in Figure 3
where we show an overlay of the 3D human body, the skeletal graph (red)
as well as the fitted skeleton (green) in various poses. Our pose estimation
algorithm can be combined with a multi-view camera setup that is able to
process ten video streams in real-time and allows for segmentation of the
user in all camera views [4]. Using such silhouette images, the visual
hull is generated efficiently through space carving. Image capturing and
processing can be performed in real-time on a single computer using a
state of the art GPU and CPU. On the same system, the visual hull can be
generated within 10 ms, the skeletal graph is extracted in 6 ms and graph
matching can be performed in less than one millisecond. This allows for
human pose estimation interactively at up to 30 frames per second.

The key benefits of our method are the robustness of limb-labeling
and its ability to perform frame-by-frame pose estimation at a low com-
putational cost due to early reduction of the input data. More precisely,
we reduce the amount of data from roughly 10° voxels to a skeletal graph
which consists of merely 10? connected nodes. We do not require any
learning phase nor a database with training images for human pose esti-
mation, which makes our algorithm particularly easy to implement. Fu-
ture work involves the integration of temporal tracking that aids the limb-
labeling stage but avoids getting stuck in erroneous poses.
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