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Abstract

Early works on human action recognition focused on tracking and classifying artic-
ulated body motions. Such methods required accurate localisation of body parts, which
is a difficult task, particularly under realistic imaging conditions. As such, recent trends
have shifted towards the use of more abstract, low-level appearance features such as
spatio-temporal interest points. Motivated by the recent progress in pose estimation, we
feel that pose-based action recognition systems warrant a second look. In this paper, we
address the question of whether pose estimation is useful for action recognition or if it is
better to train a classifier only on low-level appearance features drawn from video data.
We compare pose-based, appearance-based and combined pose and appearance features
for action recognition in a home-monitoring scenario. Our experiments show that pose-
based features outperform low-level appearance features, even when heavily corrupted
by noise, suggesting that pose estimation is beneficial for the action recognition task.

1 Introduction

Human action recognition is an active research topic within the computer vision commu-
nity. Development has been driven by the potential for many applications such as human-
computer interaction, content-based video indexing, intelligent surveillance, and assisted
living. Some of the earliest works in action recognition focused on tracking body parts and
classifying the joint movements [5, 12, 32]. These pose-based approaches stem directly
from the definition of an action as a sequence of articulated poses and are the most straight-
forward. However, they require accurate tracking of body parts, which is a notoriously
challenging task in its own right. As recent trends in action recognition have shifted towards
analysis in natural and unconstrained videos, such as sequences from feature films [17],
broadcast sports [21] and Youtube [19], efforts have moved from high-level modelling of
the human body to directly classifying actions with abstract and low-level appearance fea-
tures [6, 7, 13, 16, 24, 31] in appearance-based approaches.
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Figure 1: We address the question of whether it is useful to perform pose estimation for the
task of action recognition by comparing the use of appearance-based features, pose-based
features and combined appearance- and pose-based features.

Appearance-based methods require little to no high-level processing and can bypass the
difficulties of pose estimation. They can also take some contextual information into account
(e.g., background), since features are not restricted to the human body. And despite having
to deal with great intra-class variations, such as human appearance, background clutter and
differing viewpoints, appearance-based systems are applicable in scenarios where pose esti-
mation is difficult (e.g. monocular views) or even impossible (e.g. very low resolutions [7]).

Pose-based action recognition approaches have received little attention in recent years
due to the inherent difficulty of extracting human pose, particularly under realistic imaging
conditions. But despite requiring more initial processing, these approaches have several
advantages. First, pose representations suffer little of the intra-class variances that plague
appearance-based systems. In particular, 3D skeleton poses are viewpoint and appearance
invariant, such that actions vary less from actor to actor. Secondly, using pose representations
greatly simplifies the learning for the action recognition itself, since the relevant high-level
information has already been extracted. Given the great progress in pose estimation over the
past few years [1, 9, 10, 18, 26], we feel that pose-based action recognition systems warrant
a second look. More importantly, we address the question of whether it is useful to perform
pose estimation for the action recognition task or if it is better for the classifier to identify
the necessary information only from low-level appearance features drawn from video data.

In this work, we compare appearance and pose-based features for action recognition as
depicted in Fig. 1. Pose-based features are derived from articulated 3D joint information,
while we label as appearance-based any feature which can be extracted from video data
without explicit articulated human body modelling. We apply the same action classifier [33]
to the two different sets of features and investigate their combination into a single system.

2 Related Work

Early works in recognising human motions relied on recovering the articulated poses from
each frame and then linking either the poses or pose-derived features into sequences. Pose
information was typically obtained from moving light displays [12], motion capture sys-
tems [5] or segmentation [23, 32]. The sequences themselves were then classified through
exemplar matching [12, 23, 32] or with state-space models such as HMMs [5].

An alternative line of work models the entire body as a single entity, using silhouettes
or visual hulls [2, 3, 20, 29, 30]. These works are sometimes referred to as pose-based ap-
proaches, in reference to the extracted silhouettes of the human body. However, we consider


Citation
Citation
{Efros, Berg, Mori, and Malik} 2003

Citation
Citation
{Bandouch and Beetz} 2009

Citation
Citation
{Gall, Rosenhahn, Brox, and Seidel} 2010{}

Citation
Citation
{Gall, Yao, and Gool} 2010{}

Citation
Citation
{Li, Tian, Sclaroff, and Yang} 2010

Citation
Citation
{Taylor, Sigal, Fleet, and Hinton} 2010

Citation
Citation
{Yao, Gall, and Gool} 2010

Citation
Citation
{Gavrila and Davis} 1995

Citation
Citation
{Campbell and Bobick} 1995

Citation
Citation
{Rao, Yilmaz, and Shah} 2002

Citation
Citation
{Yacoob and Black} 1999

Citation
Citation
{Gavrila and Davis} 1995

Citation
Citation
{Rao, Yilmaz, and Shah} 2002

Citation
Citation
{Yacoob and Black} 1999

Citation
Citation
{Campbell and Bobick} 1995

Citation
Citation
{Blank, Gorelick, Shechtman, Irani, and Basri} 2005

Citation
Citation
{Bobick and Davis} 2001

Citation
Citation
{Lv and Nevatia} 2007

Citation
Citation
{Weinland and Boyer} 2008

Citation
Citation
{Weinland, Boyer, and Ronfard} 2007


YAO ET AL.: DOES ACTION RECOGNITION BENEFIT FROM POSE ESTIMATION? 3

silhouettes to be a specialised appearance feature, since it offers little interpretation of the
individual body parts, and categorise these works as appearance-based approaches.

To avoid articulated tracking or segmentation, recent works have shifted towards the
use of local, low-level appearance features such as Gabor filter responses [13, 24] and op-
tical flow [7]. Lately, spatio-temporal interest points have become especially popular, e.g.
cuboids [6], 3D Harris corners [16] and 3D Hessians [31]. As extensions of their 2D coun-
terparts used in object detection, their usage follows a traditional object detection approach.
After interest point detection at multiple scales, feature descriptors are computed, clustered,
and assigned to a code-book to be used in some bag-of-words representation [6, 17, 19].

In an attempt to bring back the “human” to human action recognition, works such as [10,
14, 28, 33] have tried to couple person detectors with the action recognition task. Even
though these works still fall under the appearance-based class, they focus on features that
are related to the human pose. In particular, we were inspired by [10], which used action
recognition to help human pose estimation. Here, we pose the inverse question of whether
pose estimation can be beneficial for action recognition.

3 Methods

For classifying the actions, we use the Hough-transform voting method of [33], which pro-
vided state-of-the-art results while being easily adaptable to use different features. In [33],
a Hough forest [8] was trained to learn a mapping between appearance-based feature patches
and corresponding votes in an action Hough space. Each tree T in the forest is constructed
from a set of patches {< = (.%;,¢;,d;)} randomly sampled from the training sequences. <7
is a 3D spatio-temporal patch sampled from a normalized track. .%; = (I,-1 ,Iiz, ...,If ) are the
F feature channels extracted at patch i, ¢; is the action label (¢; € C) and d; is the temporal
displacement of the patch centre to the action centre in the sequence.

Non-leaf nodes in a tree store a binary test; during training, the test associated to a node
is selected among a large number of randomly generated tests so that the resulting split of the
training patches maximises a desired measure. In [33], there is a random selection between
a measure of class-label uncertainty and centre offset uncertainty. The process iterates until
a leaf is created, either from reaching a maximum depth or from having too few patches
remaining. Leaves store the proportion of patches per class which reached the leaf L (p L)
and the patches’ respective displacement vectors (D.5).

Our tests compare pixels at locations p and g € R3 (within the spatio-temporal patch) in
feature channel f, with an offset 7:

0 iff(p)<l(q)+7

t(fipqsT) = { 1 otherwise .

At classification time, patches are densely extracted from the test track and passed through
all trees in the forest. The patches are split according to the binary tests stored in the non-leaf
nodes and, depending on the reached leaf, cast votes proportional to p. for the action label
and the temporal centre of each class c.

We use the publicly available source code' and apply it directly to our appearance-based
features experiments. We then modified the code to accept pose-based features (see Sec-
tion 3.2) as well as combined features (see Section 3.3).

http://www.vision.ee.ethz.ch/~yaoa
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Figure 2: Appearance-based features. (a) Colour in the Lab colour space. (b) Dense optical
flow in x and y. (c) Spatial gradients in x and y. (d) Temporal gradient.

3.1 Appearance-based features

As per [33], we use low-level appearance-based features, such as colour (Fig. 2(a)), dense
optical flow [4] (Fig. 2(b)), and spatio-temporal gradients (Fig. 2(c,d)). While more sophisti-
cated spatio-temporal features exist in the literature, we omit them from our experimentation
as [33] showed that the above-mentioned low-level features achieve comparable results.

3.2 Pose-based features

One of the biggest challenges of using posed-based features is that semantically similar
motions may not necessarily be numerically similar [15, 22]. As such, we do not directly
compare 3D skeleton joints in space and time. Instead, we use relational pose features de-
scribing geometric relations between specific joints in a single pose or a short sequence of
poses. Relational pose features, introduced in [22], have been used for indexing and retrieval
of motion capture data; we modify a subset of them for use in the random forest framework.

Let pj., € R3 and v it € R? be the 3D location and velocity of joint j; at time #. The
joint distance feature F/¢ (see Fig. 3(a)) is defined as the Euclidean distance between joints
Jj1 and jp at time #; and 7, respectively:

FA(jy, jostisn) = |Pjvsy — Pivis |ls 2

If 1{ = 1, then F/? is the distance between two joints in a single pose; if #; # t,, then F/¢
would encode distances between joints separated by time.
The plane feature F* Pl (see Fig. 3(b)) is defined as

Fpl(jl 7j23j37j4;t17t2) = diSt(plel, <pj2,tzvpj3,tzapj4,tz>)7 (3)

where (pj,,pj,,pj,) indicates the plane spanned by pj,, pj,, pj,» and dist(p;,(-)) is the
distance from point p; to the plane (-). Similarly, the normal plane feature F"? (see Fig. 3(c))
is defined as

an(j] 7j27j3aj4;tl 7t2) = diSt(le,ll ) <pj2,t2apj3,t27Pj4,12>n)7 (4)

where (pj,,pjs,Pj,)n indicates the plane with normal vector pj, — p;, passing through p,.
The velocity feature F* (see Fig. 3(d)) is defined as the component of v;, ; along the
direction of p;, — pj, at time t,:

Vit (pjz-,lz _pj3~,lz)
||(pj2¢t2 _pjs’fz)ll

FY(j1,J2, j3st1 1) = )
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Figure 3: Pose-based features. (a) Euclidean distance between two joints (red). (b) Plane
feature: distance between a joint (red) and a plane (defined by three joints - black). (c¢) Nor-
mal plane feature: same as plane feature, but the plane is defined by its normal (direction
of two joints - black squares) and a joint (black circle). (d) Velocity feature: velocity com-
ponent of a joint (red) in the direction of two joints (black). (e) Normal velocity feature:
velocity component of a joint in normal to the plane defined by three other joints (black).

Similarly, the normal velocity feature F" (see Fig. 3(e)) is defined as the component of v;, ,
in the direction of the normal vector of the plane spanned by p;,, pj; and p;, at time #,:

F™(j1,J2, J3, Jast1,02) = vji Apsy iy Pisir Pigsy)? (©6)

where 7., is the unit normal vector of the plane (-).

Any of the above features can be easily incorporated into the random forest framework by
sampling “pose patches”, i.e. { & = (P, V;,c;,d;)}, where P; and V; are consecutive frames
of skeleton location and velocity respectively and modifying the binary tests (see Eq. (1)):

0 if FF (1, justi ) < T

t(f;jlwwjn;tlatZ;T):{ 1 otherwise 5 (7)

where f, ji...Ju, t1, t2, T are randomly selected pose-based feature types, joints, times and
thresholds respectively.

3.3 Combined features

For combining appearance and pose-based features, we created combined patches {%; =
(%, )} with both appearance and pose information. Note that 7 are patches sampled
in space and time, while &; are poses sampled in time only>. When generating the binary
tests, we randomly determine whether to use appearance or pose features. In this way, the
classifier automatically selects the most relevant features.

3.4 Dataset and experimentation

We focused our comparison on a home-monitoring scenario and used the TUM kitchen
dataset [27], with multi-view video data and corresponding motion capture of actors setting
a table. The actions are relatively realistic, subtler, and thus more challenging than standard
benchmarks [2, 25]. The fixed camera views eliminate much of the problems associated with
background variance for appearance-based methods. Even though we used the provided 3D
joint positions, these were determined by a markerless motion capture system [1], i.e., not
measured directly from markers, exemplifying state-of-the-art pose estimation results.

2the same time as .o
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Figure 4: (a) 27-joint full skeleton. (b) 13-joint reduced skeleton (in red). (c¢) Normalised
action confidences for appearance-based, pose-based, and combined features for frames 200-
700 of episode 0-8. In general, action confidences are higher for pose features than ap-
pearance features; given that they are also more accurate (see Table 1), this suggests that
pose-based features are more discriminative than appearance-based features.

For each type of feature, we trained a forest of 15 trees of depth 15 each, generating
20000 random tests at all nodes. Of the 20 episodes in the dataset, we used 0-2,0-8,0-
4,0-6,0-10,0-11,1-6 for testing and the remaining 13 episodes for training, from which we
extracted 40 or less instances per action class. We normalised the output of the Hough forest
into a confidence score of each action over time, such that all actions at any time sum up to 1.
To maintain consistency with [10, 27], the two other works using this dataset, we employed
action recognition labels for the left hand as ground truth. As per [10], we also split the
idle/carry class according to whether the subject is walking or standing.

For appearance-based features, we generated silhouettes using background subtraction
and thus extracted bounding boxes which we linked into tracks. For each training instance,
we randomly selected 1200 patches of size 15 x 15 x 5. We trained independent forests for
each camera view and then used a classifier-combination strategy (max-rule) to combine the
outputs from the multiple views as per [10].

For each type of pose-based feature, we trained a Hough forest on the full 3D skeletons
provided (without limb endpoints) [27] as well as a reduced set of 13 joints (see Fig. 4(a,b)).
To simulate less-than-optimal pose estimations, we also tested the classifier on joint data
corrupted by Gaussian noise. For all pose-based feature experiments, we used 200 “pose
patches” per training instance’, with a time duration of 5 frames.

For the combined features, all settings were kept the same as for the appearance-based
features. When randomly generating the binary tests, half were for appearance features and
half for pose features, leaving the classifier to determine the optimal test and feature type.

4 Results

4.1 Appearance-based features

Using the appearance features described in Section 3.1, we achieved a combined perfor-
mance of 0.698. A sample of the normalised classifier output is shown in Fig. 4(c) and

3The possible number of unique “pose patches” is much smaller than that of appearance-based features patches.
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Figure 5: Confusion matrices for appearance-based, pose-based and combined features for
action recognition, with mean classification rates of 0.698, 0.815 and 0.801 respectively.
While “release grasp” is the most confused action in all cases, classes like “take object” or
“idle/carry (still)” significantly improve with the introduction of pose-based features.

a confusion matrix for the individual classes is shown in Fig. 5(a). Of the different fea-
tures tested, colour was selected most often in the binary tests assigned to the nodes (43%,
Fig 8(a)) in comparison to gradients (36%) and optical flow (21%).

4.2 Pose-based features

All pose-based features outperformed the appearance-based features by 7-10%. Of the dif-
ferent types of pose-based features tested on the full skeleton, velocity features and plane
features have comparable results, slightly higher than that of the joint distance (see Table 1).
Combining all three feature types yielded the best result of 0.815, with the confusion matrix
shown in Fig. 5(b). For the reduced skeleton, results are all slightly lower than or equal to
that of the full skeleton. The slight performance loss is probably not only due to the reduced
number of joints but also due to the changed distribution of the joints on the skeleton (e.g.
spine and hip in Fig. 4(a,b)). When combining several features, the performance does not
improve by much and is sometimes even lower than that of the best feature (see Table 1);
this behaviour has been observed for random forests when the number of redundant feature
channels increases [11]. When all features are used together, the selection of the features at
the nodes is nearly equal (Fig. 8(b)).

When using only joint-distance features, we examined which of the joints were selected
at the nodes according to the different actions (Fig. 6). While different joints are favoured
for the different actions, they are not immediately intuitive (e.g. joints from the legs or feet
are not always selected for walking), suggesting that joints not associated with the limbs per-
forming the action can also encode some information for discriminating the various actions.

Pose Features Full skeleton (27 joints) Reduced Skeleton (13 joints)
joint distance (Fig. 3 (a)) 0.777 0.733
plane features (Fig. 3 (b) & (c)) 0.802 0.787
velocity features (Fig. 3 (d) & (e)) 0.803 0.803
joint distance & plane features 0.784 0.769
joint distance & velocity features 0.800 0.774
plane features & velocity features 0.804 0.773
all features 0.815 0.776

Table 1: Classification performance with different pose-based features.


Citation
Citation
{Gashler, Giraud-Carrier, and Martinez} 2008


8 YAO ET AL.: DOES ACTION RECOGNITION BENEFIT FROM POSE ESTIMATION?

Still Walk Reach Take Something Lower Object
Release Grasp Open Cupboard  Close Cupboard Open Drawer Close Drawer

NN

Figure 6: Joints selected by binary tests assigned to nodes of the Hough forest, where size
of the plotted joint on the stick figure corresponds to frequency of selection. Note that each
test uses two joints as the relational pose feature.
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Figure 7: Classification accuracy as a function of the Gaussian noise added to the joint 3D
locations. Velocity features are badly affected, while the other pose-based features slowly
degrade in performance. The skeletons on the sides visualise the amount of noise added.

Finally, we tested the robustness of the pose-based features by corrupting the test joint
data with Gaussian noise to simulate errors in the extracted poses; classification accuracy
versus noise is plotted in Fig. 7. Performance of velocity features drops off quickly; joint
distance and plane features, however, are more robust and maintain almost the same per-
formance until around 75mm of added noise on each joint. At 100mm of added noise,
performance is about equal to that of the appearance-based features.

4.3 Combined appearance- and pose-based features

We found no improvements after combining the appearance-based and pose-based features
and achieve a mean classification of 0.801. The confusion matrix for combined outputs are
shown in Fig. 5(c). Looking at the normalised classifier output (Fig. 4(c)), we see that the
output is almost the same as that of the pose-based classifier, suggesting a strong favour-
ing of the pose-based features. When looking at the features selected at the nodes of trees
(Fig. 8(c)), however, appearance features are still selected 53% of the time, suggesting a high
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Figure 8: Feature selection. (a) In the appearance-based classifier, colour features (L,a,b)
were selected at 43% of the nodes, gradient features (1, Iy, I;) at 36% and optical flow (OFy,
OFy) at 21%. (b) In the pose-based classifier, joint distance was selected at 19% of the
nodes, plane features at 40% and velocity features at 41%. (c) In the combined classifier,
appearance features were selected at 53% of the nodes and pose-based features at 47%.

redundancy in the pose and appearance features. One may still expect improvement from the
combination, since the image appearance covers more than the human pose (Fig.1). Fig. 5,
however, reveals that the action classes which involve interaction with the environment (cup-
board or drawer) are already accurately estimated by the pose features.

5 Conclusion

In this paper, we raised the question of whether it is useful to perform pose estimation for the
action recognition task or if it is better for the classifier to identify the necessary information
from low-level appearance features drawn from video data. Our results showed that, using
the same classifier on the same dataset, pose-based features outperform appearance features.
While pose-based action recognition is often criticised for requiring extensive preprocessing
for accurate segmentation and tracking of the limbs, we have shown that this is not necessar-
ily the case. Even with high levels of noise (up to 100mm of additive Gaussian noise), the
pose-based features either matched or outperformed appearance-based features, indicating
that perfect pose estimates are not necessary.

On the other hand, appearance features are more versatile to use than pose features and
can be applied in many cases in which poses cannot be extracted. In addition, appearance-
based features are capable of encoding contextual information (e.g. the appearance of the
cupboards and drawers) which are missing from the poses alone. We believe that a combina-
tion of appearance and pose features would be most ideal when actions cannot be classified
by the pose alone though this was not the case in our experiments. However, the question
remains whether contextual information should be better learned from low-level or from
high-level information extracted from the data. From looking at the most confused action
class (“release grasp”), we observe that actions are often defined on high level information
which is very difficult to learn from low-level features directly.
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