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Abstract

This paper presents a simple and computationally efficient framework for human
action recognition based on modeling the motion of human body parts. Intuitively, a
collective understanding of human part movements can lead to better understanding and
representation of any human action. In this paper, we propose a generative representation
of the motion of the human body parts to learn and classify human actions. The proposed
representation combines the advantages of both local and global representations, encod-
ing the relevant motion information as well as being robust to local appearance changes.
Our work is motivated by the pictorial structures model and the framework of sparse rep-
resentations for recognition. Human part movements are represented efficiently through
quantization in the polar space. The key discrimination within each action is efficiently
encoded by sparse representation to perform classification. The proposed method is eval-
uated on both the KTH and the UCF action datasets and the results are compared against
other state-of-the-art methods.

1 Introduction
Human action recognition is a challenging problem that has received considerable attention
from the computer vision community in recent years. Its applications are diverse, span-
ning from its use in activity understanding for intelligent surveillance systems to improving
human-computer interactions. The challenges in solving this problem are multifold due to
the complexity of human motions, the spatial and temporal variations exhibited due to dif-
ferences in duration of different actions performed, and the changing spatial characteristics
of the human form in performing each action [16, 30].

A number of approaches have been proposed to address these challenges over the past
few years [12, 23]. Temporal templates have been proposed and used to categorize ac-
tions [5]. Methods that explicitly model relative changes in spatial descriptors over time [1],
or estimates of global and local motion [10, 14] have also been used. Methods that use the
silhouette of the body to construct more sophisticated representation for human action have
been proposed [36]. More recently, spatio-temporal feature-based approaches have been pro-
posed and demonstrated for various action recognition applications. Representations based
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on a set of interest points are used to capture key variations in both space and time [8, 20, 24].
Space-time volumes built based on a global shape estimated by the human silhouette was pro-
posed by Blank et al. [4]. Correlation of local features [29] and autocorrelation of features
in space-time [18] have also been used to describe human movements.

Ideally, the desired representation for actions should generalize over variations in view-
point, human appearance, and spatio-temporal changes. Moreover, the action representation
must be sufficiently rich in its descriptors to allow for the robust recognition of actions. Hu-
man action representation can be divided into two categories: global representations and
local representations [25]. The global representations can encode much of the information
but they are more sensitive to the environment (e.g., viewpoint, noise). Local representations
are less sensitive to the environment but they depend on the accuracy of interest point detec-
tors. Robust action representation should encode most of the descriptive and discriminative
information while being less sensitive to the environment.

Recently, pictorial structure models have been used for encoding spatial variations in ge-
ometric structures. The use of these models has been demonstrated for robust detection of
object parts as well as for part-based recognition of articulated objects [3, 11, 27]. In the con-
text of human action recognition, it is reasonable to assume that each action can be described
as a combination of movements of different body parts (e.g, head, hands, legs and feet). Intu-
itively, a collective understanding of human part movements can lead to better understanding
and representation of any human action. In this paper, we propose a generative representa-
tion of the motion of human body parts to learn and classify human actions. The proposed
representation combines the advantages of both local and global representations, encoding
the relevant motion information as well as being robust to local appearance changes. Our
representation is motivated by the recent success of pictorial structures [3, 11, 27] and our
recognition framework is inspired by the fundamentals of sparse representation for recogni-
tion [32]. The contributions of our work are:

1. A representation of human action using a combination of body part movements. We
propose a new representation described by a combination of human body-part move-
ments corresponding to a particular action. We use the polar space to represent the
pattern of each human body-part movement.

2. Sparse representation-based recognition for human actions using the proposed human
body-part representation. We propose a computationally efficient algorithm capable
of discriminating the key differences in movement of each body-part pertaining to
a particular action, thereby providing a robust and accurate recognition of complex
actions.

The rest of the paper is organized as follows. Section 2 describes the human action
representation proposed and used in this work along with the classification algorithm used to
address the recognition task. Experimental results and evaluations are presented in Section 3.
Finally, Section 4 concludes the paper.

2 Approach

2.1 Human Action Representation
A person is represented as a collection of body parts that are connected together in a de-
formable configuration. A common way to express such a part-based model is in terms of an
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Figure 1: Depiction of human body part extraction and transformation to a local coordinate
system.

undirected graph G = (V,E), where the vertices V = {v1, ...,vP} correspond to the P body
parts, and there is an edge (vi,v j) ∈ E for each pair of connected part vi and v j. A part-based
person representation is given by a configuration of P parts L = {l1, ..., lP} where, li specifies
the location of part vi. The location of each part is its location in the image space. Pertain-
ing to human action recognition, each video frame provides us a snapshot of the action in
terms of a configuration of the P body parts. Thus, a human action can be represented as a
sequence of configurations of its body parts.

The configuration encodes the geometry of the human body or relationships between the
body parts in the image space. As the action progresses through the video, the changes in the
locations of the human body parts leads to changes in the configurations in the correspond-
ing frames. To incorporate the relative changes in the body part locations, which collectively
constitute the human action, we need to transform the human part locations from the im-
age coordinate space to a local coordinate system. We consider the center of the torso as
the origin of the local coordinate system. Thus, location li of the part vi in the image co-
ordinate space will become lT

i = {xi,yi} in the new local coordinate system. Using polar
mapping, the location of the part will be represented by two components (ri,θi) in the new

coordinate space, where ri =
√

x2
i + y2

i is the distance of part vi from the center of the torso
and θi = arctan( xi

yi
) is the orientation of the part vi with respect to the vertical axis. As a

result, a snapshot of a human action can be represented by the set of P body part location
vectors (ri,θi). Figure 1 shows a pictorial representation of the part-based model and the
transformation to a local coordinate space. It is possible that human actions can be distin-
guished based on distinct motion patterns of even a single body part. For example, when
waving with two hands and waving with one hand, the motion patterns of almost all body
parts are the same, except motion of one hand. This constitutes a key difference that can
be used to differentiate the two actions. As an example, Figure 2 shows the distribution of
θ and r for two body parts across four actions (Diving, Golf-Swing, Kicking, and Lifting).
The distributions are distinct enough to be used for recognizing and can thus, be used as a
robust, compact, and highly discriminative part motion descriptor. Our key contribution is
the novel use of 2D histograms of body part locations in polar geometry as a representation
of human action. Collectively, all the 2D histograms of each body part’s location generated
over the entire video form a description of relative motion of body parts that constitutes a
specific action. Such a representation is rich in human action description, since it encodes
the meaningful changes in the relative positions of body parts over time. Each body part’s
motion descriptor is a 2D histogram of size R×O, where R and O are the numbers of radial
and orientation bins, respectively. The 2D histogram is treated as a R×O motion descriptor
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Figure 2: Depiction of the motion patterns of two human body parts for different human
actions.

image. Thus, every human action is represented by P motion descriptor images, each de-
scribing the motion of the P body parts. Figure 3 depicts a representation of the body part
motion descriptors, where the pixel value at each location in the motion descriptor image is
represented by the number of times the respective body part is observed at that orientation.
2.2 Sparse Representation-based Recognition
Using the above action representation, an action recognition task can be considered as a 2D
recognition problem. The dimensionality of the recognition problem is naturally managed
since the motion representation efficiently encodes the temporal evolution of the action. This
significantly reduces the recognition complexity.

In this section, we introduce our action recognition algorithm inspired by the sparse
representation-based recognition algorithm [32]. A test sample comprised of P motion de-
scriptors can be represented by a complete dictionary whose base elements are the training
samples themselves. In other words, for each body part motion descriptor, the test sample
can be represented as a linear combination of just those training samples that belongs to the
same class. In mathematical terms, this representation is naturally sparse and the sparsest
linear representation of the test sample can be recovered efficiently via `1-minimization.

Let us define the set of K human action classes to be recognized. A basic problem
in action recognition is to determine the class that a new test sample belongs to. Let us
consider a set of nk training videos for the kth action class where each video results in P
motion descriptor images. As a result, for a particular human body part p, we will have a set
of nk training samples from the kth class as columns of a matrix Ap

k = [ap
k,1, ...,a

p
k,nk

]∈Rm×nk ,
where each motion descriptor image of part p is identified as the vector ap ∈Rm(m=R×O).

Let us consider the testing video y resulting in P motion descriptor images which are
identified as the set of P vectors {yp ∈ Rm | p = 1, ...,P}. For a particular human body part
p, we want to represent a test sample yp as a sparse linear combination of training samples.
Given sufficient training samples of the kth action class, Ap

k = [ap
k,1, ...,a

p
k,nk

] ∈ Rm×nk , any
new test sample yp ∈ Rm from the same class approximately lies in the linear span of the
training samples associated with action class k; i.e.,

yp = wp
k,1ap

k,1 + ....+wp
k,nk

ap
k,nk

, p = 1, ...,P (1)
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Figure 3: Human action representation by transforming the human body part motions to a
polar histogram.

where {wp
k, j ∈ R | j = 1, ...,nk}.

Let us define a matrix Ap for the entire training set as the concatenation of the n training
samples of all K action classes for particular human part p; i.e.,

Ap = [Ap
1 , ...,A

p
K ] = [ap

1,1,a
p
1,2, ...,a

p
K,nk

]. (2)

The linear representation of yp can be rewritten over complete training samples as:

yp = Apxp
0 ∈ Rm, p = 1, ...,P (3)

where xp
0 = [0, ..0,wp

k,1,w
p
k,2, ...,w

p
k,nk

,0, ...,0]T ∈ Rn(n = ∑
K
k=1 nk) is the coefficient vector

whose elements are zero except for some that are associated with the kth class.
This representation is naturally sparse if the number of action classes K is reasonably

large. The more sparse is xp
0 , the easier it is to accurately determine the action class of

test sample yp for particular body part p. This motivates us to seek the sparsest solution to
yp = Apxp by solving the following optimization problem:

(`0) : x̂p
0 = argmin‖xp‖0 subject to yp = Apxp (4)

where ‖x‖0 = #{i : xi 6= 0}.
However, the problem of seeking the sparsest solution of an underdetermined system of

linear equations is NP-hard, and is difficult even to approximate [2]. Recent developments
in the theory of sparse representation indicate that if the solution sought is sparse enough,
the solution of the `0-minimization is equal to the solution to the following `1-minimization
problem [9]

(`1) : x̂p
1 = argmin‖xp‖1 subject to yp = Apxp. (5)

The problem (`1) can be cast as a linear programming problem and solved using modern
interior-point methods, simplex methods or other efficient techniques when the solution is
known to be very sparse. Those methods can obtain the global solution of a well-defined
optimization problem.
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Given a new test motion descriptor yp for particular part p, we first compute its represen-
tation x̂p

1 via Eq. 5. If this test sample belongs to action class k, ideally, the nonzero entries
in the estimated x̂p

1 will be associated with multiple columns of Ap from a single action class
k. However, due to noise and modeling error, the estimated x̂p

1 can contain small nonzero
entries associated with multiple action classes. To handle this problem, we can classify yp

based on how well the coefficients associated with all the training samples of each class re-
produce yp. For each class k, let us define function φ

p
k : Rn → Rn to be the characteristic

function that selects the coefficients associated with the kth class. For x ∈Rn, let φ
p
k (x) ∈Rn

be the vector whose only nonzero entries associated with class k are kept from vector x. As
a result, we can approximate the given test sample yp as ŷp

k = Apφ
p
k (x̂

p
1). This allows us to

obtain the residual between yp and ŷp
k for a particular human body part p, computed as:

rp
k (y

p) = ‖yp−Ap
φ

p
k (x̂

p
1)‖2. (6)

For a new test action y, which is characterized by P motion descriptors {yp | p = 1, ...,P}
corresponding to P human body parts, we compute the total residuals of all P body parts
over all K action classes. Then, we classify y to belong to the action class k that minimizes
the total residual:

y→ k∗ where k∗ = argmin
k

P

∑
p=1

rp
k (y

p). (7)

The complete recognition procedure is summarized in Algorithm 1 below. Our implemen-
tation for `1-minimization problem is based on the model proposed by Wright et al. [33].

Algorithm 1 : Sparse Representation-based Recognition
1: Input: Data matrix A = {Ap | p = 1, ...,P} where Ap = [Ap

1 , ...,A
p
K ] ∈Rm×n for K action

classes. A test sample y = {yp ∈ Rm | p = 1, ...,P}.
2: for p = 1 to P do
3: Normalize the columns of Ap to have unit `2-norm
4: Solve the `1-minimization problem:

x̂p
1 = argmin‖xp‖1 subject to yp = Apxp (8)

5: for k = 1 to K do
6: Compute the residuals rp

k (y
p) = ‖yp−Apφ

p
k (x̂

p
1)‖2

7: end for
8: end for
9: Output: Assign y to class k∗ where k∗ = argmink ∑

P
p=1 rp

k (y
p).

3 Experiments and Results
In this section, we describe selected experiments that demonstrate the performance of the
proposed algorithm for human action recognition. We test our algorithm using two bench-
mark datasets: the KTH human motion dataset [28], and the UCF Sport dataset comprising of
200 video sequences [26]. The KTH dataset consists of six actions (Boxing, Hand-clapping,
Hand-waving, Jogging, Running and Walking) performed several times by 25 subjects in
different scenarios of outdoor and indoor environments with scale changes. The UCF Sport
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Figure 4: Recognition rates for different quantization levels of the radius and orientation:
(L) on the KTH dataset and (R) on the UCF Sport dataset.

dataset consists of nine sports actions (Diving, Golf-Swinging, Kicking, Lifting, Horse-
Riding, Running, Skating, Swinging, and Walking), which are captured in unconstrained
environments with a wide range of scenes and viewpoints.
3.1 Dataset Preprocessing
In our implementation, we consider P = 9 body parts that contribute in expressing any hu-
man action. These body parts are: head, left and right upper and lower arms, left and right
upper and lower legs. We use the pictorial structures model to identify human body parts in
each frame of the video. First, we implement the entire framework in an automatic pipeline
by using pictorial structure model, proposed in [3], to extract human body parts. Second,
we manually annotate the video data to extract body parts in each of the video frames. This
approach ensures consistent detection of the parts, thereby evaluating the upper-bound accu-
racy of action recognition under the proposed representation. In evaluating the accuracy of
human action recognition systems, different dataset partitions have been used [6, 8, 13, 28].
A more common reporting of the performance has been based on the use of leave-one-out
cross-validation framework [6, 8, 13]. In our work, we use the leave-one-out cross validation
technique to train and test our algorithm.

To transform the sequence of body part configurations of a human action to motion de-
scriptor images, we quantize the orientation range θ ∈ (0;2π) into O bins and the radius r
into R bins. This quantization process also affects the performance of the algorithm. If the
quantization is very fine, it results in highly discriminant motion descriptors but the within-
class variance also increases and vice-versa if coarse quantization is used. Figure 4 depicts
the variation in recognition rates as a function of quantization in orientation and radius. Em-
pirically, we found that three bins for radius and 12 bins for orientation (3× 12) is optimal
for the KTH dataset, and two bins for radius and 24 bins for orientation (2×24) is optimal
for the UCF Sport dataset.
3.2 Action Recognition Performance
The recognition accuracy of our method along with those obtained from previously pub-
lished methods is presented in Table 1 for the KTH dataset, which is a standard benchmark
for human action recognition. The 95.67% recognition accuracy achieved by our method is
comparable to the state-of-the-art methods. From the confusion matrices in Figure 5(L), it is
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Approach Year Accuracy (%)
Schuldt [28] 2004 71.72
Dollar [8] 2005 81.17
Kim [17] 2007 95.33
Laptev [21] 2008 91.80
Liu [22] 2009 93.80
Gilbert [13] 2009 96.70
Bregonzio [6] 2009 93.17
Yao [34] 2010 92.00
Kovashka and Grauman [19] 2010 94.53
Kaaniche and Bremond [15] 2010 94.67
Cao [7] 2010 95.02
Our method 95.67

Table 1: Comparison of recognition rates on the KTH dataset.

evident that most of the actions are accurately recognized, even actions jogging and running
with subtle visual differences, which are easily confused by some other methods. Results

Figure 5: Confusion matrices (L) for the KTH dataset and (R) for the UCF Sport dataset.

on the previous version of the UCF Sport dataset containing 150 videos have sometimes
been reported with ten actions [19, 31, 34], but a more consistent reporting has been with
nine actions. More recently, results have also been reported for other approaches evaluated
on the updated UCF Sport dataset with 200 videos [26, 35]. Our results are based on con-
sidering nine actions as presented in this updated dataset. Table 2 shows the comparison
between our approach and previous approaches on the UCF Sport dataset. To the best of
our knowledge, our results, based on a fully automatic pipeline, provide the best recogni-
tion accuracy of 88.83%. Figure 5(R) depicts the confusion matrix across the nine actions.
These results demonstrate the discriminative power in our representation of human actions
and the efficiency and accuracy of our recognition algorithm. Figure 6 shows few examples
of automatic part detection for both KTH and UCF Sport datasets. While the automatic part
detection is not always accurate, the results indicate the robustness of the proposed repre-
sentation and its ability to compensate for errors. However, the evaluation of our approach
without errors in part detection would provide an upper bound for the performance of our
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Approach Year Accuracy (%)
Rodriguez [26] 2008 69.20
Yeffet and Wolf [35] 2009 79.20
Wang [31] 2009 85.60
Yao [34] 2010 86.60
Kovashka and Grauman [19] 2010 87.27
Our method 88.83

Table 2: Comparison of recognition rates on the UCF Sport dataset.

Figure 6: Automatic human body part detection for the KTH and UCF Sport datasets.

approach. Hence, we report the results on both datasets with manually annotation of human
body parts. This results in 97.83% recognition accuracy for the KTH dataset and 91.37%
for the UCF Sport dataset. The results not only show the upper bound in recognition rate of
our method, but also indicate that our approach can achieve better results by improving the
human part detection model.

4 Conclusion

In this paper, we have proposed a part-based 2D representation of human action that nat-
urally encodes the temporal progression of an action. We also proposed a robust human
action recognition algorithm inspired by sparse representation. Our image representation
incorporates both global and local motion information and is robust to variations in poses,
view points and human appearance. Experiments have shown the efficiency of our method
by obtaining state-of-the-art recognition results on both the benchmark KTH dataset and the
challenging UCF Sport dataset.
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