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Image classification is a challenging task with many applications in com-
puter vision, including image auto-annotation and content-based image
retrieval. Recent state-of-the-art image classification and annotation ap-
proaches [3, 4] used global features extracted from the images. However,
the global features may not be well-suited in when images contain mul-
tiple objects, and therefore image classification has been modeled as a
Multiple Instance Multiple Label (MIML) learning problem [7, 8, 9]. In
this paper we introduce an algorithm that is scalable for tasks where the
number of bags and the number of instances can be large. In order to do
so, we focus on a linear model, parameters for which can be learned by
solving an optimization problem in the primal.

Let Rd be a d-dimensional vector space and let L = {l1, ..., lM} be
a set of labels. Given the dataset D = {xi,yi} where xi ∈Rd and yi ∈L
the goal of supervised learning is to learn a function f : Rd →L . The
general formulation of learning [6] suggests learning a classifier by trad-
ing off between the classifier’s average empirical loss and the complexity
of the classifier. This formulation has been extended to multiple label
learning [2] by training a collection of classifiers, each parametrized by a
weight vector w j for each class l j by decomposing the loss over each label
for each instance. Let there be M classifiers h1...hM (one for each of the
M classes, or equivalently, classifiers h1...hM predicting the correspond-
ing elements of the vector of binary labels y1
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i , so that y j

i = 1 if l j

is a label assigned to xi and y j
i =−1 otherwise).
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In case of MIML, the input is a bag of instances Xi =
{

xi1, ...,xiki

}
and output is a collection of labels Yi =

{
y1

i , ...,y
mi
i
}

. We construct the
loss as

loss(y j
i ,h j(Xi) =− log(p(y j

i |Xi))

We use sigmoid function to model the probability that the kth instance
xik in the ith bag xi is positive (with respect to membership in class label
l j):

p(y j
ik = 1|xik) = σ(wT

j xik) =
1

1+ exp(−wT
j xi j)

Then the probability that the instance is negative with respect to mem-
bership in the jth class is given by 1− p(y j

ik = 1|xik). Because a bag is
labeled negative only if all the instances in it are negative, we can use a
Noisy-Or model to combine the probabilities that the individual instances
in the bag are negative:
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i =−1|xi,w j) =

Ki

∏
k=1

(
1− p(y j

i |xik,w j)
)
=

Ki

∏
k=1

(
1−σ(wT

j xik)
)

The probability that the bag is positive is then given by

p(y j
i = 1|xi,w j) = 1− p(y j

i =−1|xi,w j)

and therefore we have all the pieces necessary to compute the loss over
a bag. The loss is then modeled as negative log of the probability of
correctly assigning the label:

l(y j
i ,h j(xi)) =−δ

(
y j

i ,1
)

log p(y j
i = 1|xi)−δ

(
y j

i ,−1
)

log p(y j
i =−1|xi)

where δ (a,b) = 1 if a = b and 0 otherwise.
The choice of an appropriate penalty function has been an active

research area. We consider three loss functions: Trace Norm, Frobe-
nius Norm (defined as ||W ||22 = ∑i w2

i ) and `1 Norm (defined as ||W ||1 =

∑i |wi|) .The Trace Norm [1] ‖W‖
Σ

is defined as

min
W=FG
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)

where ‖·‖F is the Frobenius norm (another name for the matrix `2 norm).
The penalty term ‖W‖

Σ
is equivalent to the sum of absolute values of

the singular values of the matrix: ‖W‖
Σ
= ∑ |γi| where γ is a vector of

singular values of W and |·| is the absolute value and therefore only the
SVD of W needs to be computed.

The model parameters W can be learned by solving an unconstrained
optimization problem. The goal is to find weight matrix W ∗ that mini-
mizes

J = Jloss + Jreg

where Jloss = ∑
N
i=1 ∑

M
j=1 loss(y j

i ,h j(xi)) and Jreg = C‖W‖
Σ

. This is an
unconstrained minimization problem, and therefore it can be solved using
any unconstrained minimization method [5] including Stochastic Gradi-
ent Descent that makes updates for one example at a time.

We use three datasets to evaluate our algorithm and compare it to the
state-of-the-art: Microsoft v2, Corel-5K and IAPR TC-12. The results on
Microsoft dataset are reported in Table 1.

Method MIMLSVM MIMLBoost [8] MIMIL [8] MIL-Kernel [7]
Average AUC 0.776 ± 0.02 0.766 0.902 0.896

Method DMIML`1 DMIML`2 DMIMLΣ DMIML
Average AUC 0.897±0.011 0.914±0.014 0.909 ± 0.013 0.829 ± 0.031

Table 1: AUC (± standard deviation) for MSRC V2 dataset

The results on Corel and IAPT-TC datasets are shown in Table 2. We
use AUC instead of precision/recall for evaluation of Corel5K since liter-
ature that uses this dataset does not use consistent features, or evaluation
protocol. Therefore it is not always obvious whether the improvement in
precision/recall comes from the new features set, or from the number of
keywords assigned, or from the learning algorithm itself.

MIMLSVM MI-MatFact DMIML DMIMLΣ DMIML`2 DMIML`1
IAPR-TC 0.711 0.761 0.779 0.797 0.788 0.781
Corel 5K 0.691 0.713 0.758 0.789 0.773 0.761

Table 2: Average AUC for Corel and IAPR-TC datasets
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