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Abstract

Tracking generic human motion is significantly challenging because of the high-
dimensional state space as well as various motion types. In order to deal with the
challenges, we propose a fusion formulation to integrate the low- and high-dimensional
tracking approaches into one framework. The low-dimensional approach successfully
overcomes the high-dimensional problem on tracking the motions with available training
data by learning motion models. On the other hand, the high-dimensional approach is
employed to recover the motions without learned models by sampling directly in the pose
space. Within the framework, the two parallel approaches are fused by a set of criteria at
each time step. The fusion criteria ensure that the overall performance of the system is
improved by concentrating the advantages of the two approaches and avoiding their weak
points. Experimental results with qualitative and quantitative comparisons demonstrated
that the proposed formulation can fully display the advantages of different algorithms
and effectively track generic human motion.

1 Introduction
3D human motion tracking technology has gained a lot of attentions in recent years because
of its potential applications on smart surveillance systems, advanced human-computer in-
terfaces, markerless motion capture, etc. In this research, there are two primary challenges.
The algorithm should be able to cope with the high-dimensional state space as well as to
recover complex postures with various motion types and styles. Many approaches have been
proposed to address these problems [3, 4, 8, 15, 17, 18, 19]. One kind of low-dimensional
approaches that learn motion models by dimensionality reduction can successfully deal with
the high-dimensional problem, but it only works on specific motion types with available
training data. Other approaches which employ smart sampling directly on high-dimensional
pose space don’t have that limitation. However, this kind of methods is not robust enough
and has high computational cost.
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In order to solve the aforementioned problems simultaneously, we propose a fusion for-
mulation to integrate the two kind of approaches into one framework. Within the frame-
work, two independent trackers with different algorithms proceed in parallel in different
state spaces, and are fused according to a set of criteria at each time step. The essence of
this fusion is that the two trackers could cooperate and complement each other to deal with
various problems in generic motion tracking. The main contribution of this paper is that we
solved the two following issues in the fusion procedure: (1) How to adapt algorithms au-
tomatically according to the motion sequence and make them fully display their respective
advantages. (2) How to make multiple algorithms complement each other to improve the
overall tracking performance. The fusion of multiple approaches makes our tracking system
outperform any system that uses single approach.

The remainder of this paper is organized as follows: in the next section, related work
is briefly reviewed and discussed. Section 3 and 4 introduce the high-dimensional tracking
approach as well as the low-dimensional approach respectively. In Section 5, details of our
fusion framework are provided. Experimental results are presented in Section 6 and the
paper is finally summarized in Section 7.

2 Related Work
The related works will be mainly divided into three categories for reviewing. One category of
approaches employed sampling-based tracking techniques directly in the high-dimensional
pose space, for example, particle filtering [15], partition sampling [11] and annealed particle
filtering [3]. This kind of approaches can recover 3D human poses without restriction on
motion types. However, it requires a large number of particles to search the optimal mode in
the pose space as well as it’s easy to fail under conditions of a loose-fitting body model and
noisy background lacking rich observations [12].

Another category of methods employ motion models to guide human tracking. For
this kind of approaches, a low-dimensional space is learned by applying dimensionality
reduction on the Mocap training data and the human poses are recovered by searching
in the low-dimensional space. A variety of existing dimensional reduction algorithms are
considered, such as Principal Component Analysis (PCA)[19], Locally Linear Embedding
(LLE)[8], Gaussian Process Latent Variable Model (GPLVM) [18], Gaussian Process Dy-
namical Model [17] and dynamical binary latent variable models [4]. Tracking with learned
motion models can successfully recover 3D human poses, but the drawback is that it cannot
be generalized out of the set of training data. As improved solutions, the works of [2] and
[10] employ a hierarchical decomposition of the motion model by H-GPLVM. Hierarchi-
cal searching is used through the latent spaces for finding the optimal human poses. This
method can track more types of motions given a set of "basic activity" training data. How-
ever, we cannot make the algorithm generalization by just increasing the complexity of the
motion models or increasing the types of motion models, because of the following limita-
tions: (1) The motions with available training data are always limited. (1) The computational
cost would increase dramatically as excessive competition from the redundant models.

As the third kind of approach, the recent work [9] combines low- and high-dimensional
motion models together to track human poses. In its framework, a low-dimensional joint-
activity space is learned with the training data, and the other "unknown" motion types with-
out training data are modeled in high-dimensional space. Variable particle numbers are al-
located for each motion model, and the annealed particle filtering is employed for searching
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the optimal mode. This work obtains good performance on tracking generic motion se-
quences. Nevertheless, the dimensionality of the joint-activity space must grow and the
computational cost will increase with the number of "known" activities. Moreover, there’s
no re-initialization mechanism to guarantee that the particles in the joint space are in the
proper positions when the pose transfers from the high-dimensional model of an "unknown"
activity to the low-dimensional model of a "known" one.

That is to say fusion of multiple techniques is a promising way to solve tracking prob-
lems. Instead of uniting various motion models together [9], we propose a formulation to
integrate the low- and high-dimensional approaches into one framework. Within the frame-
work, the power of each approach can be exploited. Details of the proposed method will be
introduced in the following sections.

3 Tracking in the high-dimensional pose space

Tracking human motions directly in the original pose space can handle unconstraint types of
motions, while the high dimensional problems should be addressed. Many smart sampling
approaches have been proposed to deal with this problem. Among these methods, the an-
nealed particle filtering (APF)[3] obtains a relatively good performance and is often used as
a baseline algorithm [10, 16].

The APF employs a set of N weighted particles, {(x1,w1),(x2,w2), . . . ,(xN ,wN)} to ap-
proximate the target distribution over full 3D pose space. For each time step, the APF
attempts to find optimal mode by "cooling" the target distribution and then "warming" it
gradually through a number of successive re-sampling iterations (or layers).

At each layer m = M,M− 1, . . . ,1, the particles are dispersed by a dynamical model
p(xt ∣xt−1), and evaluated against the observation y by a weighting function wm(x,y), where

wm(x,y) = w(x,y)βm , (1)

for β1 > β2 > .. . > βM . A large βm produces a peaked weighting function wm, resulting in
a high rate of annealing. Small values of βm have the opposite effect. The whole effect is to
gradually concentrate particles into the globally optimal mode of the target distribution.

The standard APF often uses the addition of Gaussian noise to approximate the dynam-
ical model p(xt ∣xt−1). Since the state space is quite large and high-dimensional while the
searching range permitted is quite small, the tracking could be easy to fail and hard to re-
cover if the standard APF falls into incorrect mode [1].

4 Tracking in the low-dimensional latent space

Reducing the dimensionality of the state space is a successful approach to deal with the
high dimensional problems of human motion tracking. The idea is based on the facts that:
the space of possible human motions is intrinsically low-dimensional [6, 14] and the set of
typical human poses is far smaller than the set of kinematically possible ones [5]. Many
recent works proposed to learn low-dimensional motion models and track human motions in
the low-dimensional space.
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4.1 Tracking specific activities by learning motion models
For successfully tracking a specific human motion, the learned models should contain rich
prior of the high-dimensional poses and dynamics. Many dimensionality reduction tech-
niques have been employed to learn motion models. Among all of them, the GPDM is one
of the most effective approaches because it has smooth latent embedding and generalizes
gracefully to motions outside the training dataset [17].

The motion model learned by the GPDM contains a temporal dynamics in the latent
variable space,

z′ = fgp_dyn(z), (2)

and a static mapping for the high-dimensional pose recovery from the latent variable space,

x = fgp(z) (3)

where z represents the position in the latent space and x represents the corresponding high-
dimensional pose.

In the tracking step, we take a similar framework as the GP-APF [13]. A set of N
weighted particles (z1,w1),(z2,w2), . . . ,(zN ,wN) is used to approximate the posterior dis-
tribution over the latent pose positions. The proposal distribution of the temporal dynamics
is defined as

p(zt ∣zt−1) = N(zt−1 +( fgp_dyn(zt−1)− zt−1)∆T , σdyn) (4)

where ∆T is the time interval which satisfied a Gaussian distribution, and σdyn is the variance
of the prediction errors, computed by the GPDM dynamics. After the dynamical prediction,
the pose hypotheses are recovered by the GPDM static mapping of Equation (3), and then
evaluated by the weighting function.

In order to give an estimation as close as possible to the actual pose, we add an additional
annealing layer at the last step to optimize the poses in the original pose space, as [13].
Because the models learned by the GPDM provides rich motion prior and the searching
space is relatively low-dimensional, only a small amount of particles can achieve satisfactory
tracking performance.

4.2 Switching Multiple Motion Models by mixed-state
CONDENSATION

For tracking the motion sequence containing several activities, the motion models are learned
respectively for each activity by the GPDM. We need a mechanism to support multi-model
switching when the motion transfers from one activity to another, because each motion model
has its distinct latent variable space. As a solution, the mixed-state CONDENSATION [7]
provides an effective approach for tracking with multiple dynamical models.

For the first step, we should learn the transition mappings between any two motion mod-
els. For any two activities, e.g. walking and jogging, two sets of training pairs are generated
by looking for the most similar poses in one dataset, given a pose belonging to the other
dataset and vice versa. A pair of transition mappings between the latent spaces of the two
motion models are learned using Relevant Vector Machine (RVM). The similarity between
two poses is defined as proportional to the cosine similarity of the pose vectors, and inversely
proportional to the Euclidean distance of the pose vectors. In practice, we find that better
matching result would be achieved if considering the angles of key joints only and remove
leaf joints from the original pose vector when computing the similarity.
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We define our mixed-state space as [z,a], where z denotes the latent position and a de-
notes the activity label. The dynamical propagation is decomposed as follows,

p(zt ,at ∣zt−1,at−1) = p(zt ∣at ,zt−1,at−1)p(at ∣zt−1,at−1) (5)

p(at ∣zt−1,at−1) : p(at = i∣zt−1,at−1 = j) = Ti j(zt−1). (6)

where the Ti j are transition probability from activity i to activity j. If we assume that Ti j is
independent of the pose, the transition matrix is invariant and can be determined by statistical
estimation at the beginning of the tracking.

For every tracking step, the activity labels are determined by sampling from the transition
matrix first. If any particle changes its activity label, the latent position is reset in the new
motion space by the transition mappings. Then, the dynamical propagation in the latent
space is proceeded as the same process as tracking with single motion model. The mixed-
state CONDENSATION can adapt the number of particles belonging to each motion model
by weighting and re-sampling.

5 Fusion of Low- and High-Dimensional Approaches

Though the learned motion models can reduce motion ambiguities and enhance tracking
accuracy and stability, a limited number of motion models cannot get good results due to
the complexity and uncertainty of human motion. On the other hand, annealed particle
filtering could track motions of unconstraint types, but it is lack of robustness, with high
computational cost, and hard to recover from failures. Therefore, we propose to a method
to integrate the model learning approach with the standard APF into one framework. Our
goal is to track generic human motions without type constrains as stably and effectively as
possible.

5.1 Fusion Strategy Overview

Figure 1 shows an overview of our fusion framework. Within the framework, two indepen-
dent trackers with different algorithms run in parallel and are fused by a set of criteria at each
time step.

The first tracker (denoted by the GPDM-APF) employs the learned motion models to
track human motions. A smaller amount of particles are allocated for it because the latent
state space is low-dimensional. The second tracker takes the standard APF algorithm to
recover human poses in the high-dimensional pose space, with a larger amount of particles.
After each time step, the quality of the performance is evaluated for each tracker by applying
the cost function on each expectation output. The criteria is established to take the result
of the winning tracker as the current output of the system and update the state of the other
route if necessary. Therefore, when the body performs a trained activity, the system prefers
tracking with learned motion models, and the state of the standard APF will not deviate
beyond a certain range. When the body performs motions of un-trained motions, the standard
APF takes over the tracking and supplements the tracker with learned motion models if
necessary.
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State 
(xt, zt, at)

State (xt)

Tracking by
the GPDM-APF

Tracking by 
the Standard APF

Cost 
Evaluation

Fusion
Criteria

Output
State (xt+1)

Reset state if necessary

Reset state if necessary

Parallel Trackers Fusion Strategy

Figure 1: An overview of the fusion framework. We integrate the two parallel trackers
(i.e. the GPDM-APF and the standard APF) and make them complement each other by the
fusion criteria.

5.2 Cost Function and Criteria
The cost function is used for the comparison of pose hypotheses with image observations.
The particle weights w are also calculated by exponentiation on the values of the cost func-
tion. The definition of cost function is taken from the symmetrical silhouette likelihood
used by Sigal et al. [16], which penalizes non-overlapping regions for both silhouettes of
foreground and pose projection.

Let F(p) represent the observation foreground and M(p) the silhouette map of projection
model. The cost is computed as,

Cost =
1
N ∑

n
(

∑p(F(p)(1−M(p)))

∑p(F(p))
+

∑p(M(p)(1−F(p)))

∑p(M(p))
). (7)

where N is the number of camera views .
During the tracking, we apply the cost function on the pose expectation of each tracker

after each time step, and the cost value is used to evaluate the tracking quality of the tracker
for the current frame. Let cost(SAPF) denote the cost of the standard APF and cost(GPDM−APF)

the cost of tracking with the GPDM models, the criteria for choosing the output and updating
the trackers is set as follows:

If cost(SAPF) ≥ cost(GPDM−APF), the output is set as the expected pose given by the
GPDM-APF. Conversely, the output is set as the expected pose given by the standard APF.

If cost(SAPF)−cost(GPDM−APF)> δ , the deviation of the standard APF exceeds the thresh-
old δ . The state of the particles from the standard APF is set to the expected pose of the
GPDM-APF, and the corresponding weights are all reset as equal.

If cost(GPDM−APF)−cost(SAPF) > δ ′, the deviation of the GPDM-APF exceeds the thresh-
old δ ′. This is often the case when an un-trained activity occurs and the learned GPDM mod-
els cannot handle it. We need to reset the latent positions of the particles in the GPDM-APF
in order to guarantee that the GPDM-APF can work when the motion transfers back to the
trained activities. Suppose the expected pose of the standard APF is denoted by xAPF , the
new particle set of the GPDM-APF, which contain poses, latent positions and activity labels,
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are created by selecting the top k nearest neighbor of xAPF from the training dataset of each
activity. The weights for the particles are set to the similarity between the corresponding
poses and xAPF .

Since the GPDM-APF is preferred for tracking the sequences of trained activities, we set
that δ ′ ≥ δ in the criteria. In the following experiments, the values of the thresholds δ and
δ ′ are determined manually. However, we find that the performance are better than that of
using just standard APF or just GPDM-APF even when both thresholds are set equal to zero.

6 Experiments

In order to investigate the performance of our technical fusion approach to generic motion
tracking, we design two experiments to track the HumanEva-II Combo sequences. The re-
sults are evaluated by the online evaluation system using the 3D absolute error defined in
[16]. The cost of the parallel trackers at each frame are also provided to prove the correct-
ness of our fusion criteria. The experiments also conducted quantitative comparisons with
the methods using only the standard APF or the GPDM-APF.

6.1 Basic Test on Generic Motion Sequences

In the first experiment, we test our fusion approach on the HumanEva-II S2 Combo motion
sequence. This sequence contains three activities, i.e. walking, jogging and balancing. For
the first two activities, the training data of HumanEva-I S2 are used to learn the motion
models. However, no training data is available for the balancing motion.

For the experimental settings, 4 camera views are used for computing the likelihood. We
assigned 80 particles with 3 annealing layers for the GPDM-APF and 150 particles with 4
layers for the standard APF. The distribution of the time interval ∆T in the GPDM-APF is set
to N(1,0.3). The sampling covariance of the standard APF is learned using the HumanEva-I
training data. For the fusion criteria, we set δ = 0, δ ′ = 0.01 and k = 10. The cost, as the
quality representation for each tracker is represented in Figure 2.

Figure 3 shows the tracking performance of our fusion approach, with quantitative com-
parison to the other two methods using only the standard APF or the GPDM-APF. The output
poses are shown on the images of HumanEva-II S2 camera C1 in Figure 4. As the results
demonstrated, our method could work properly on the kindred motion sequences partly with
trained models.

6.2 Extended Test on Generic Motions with Various Styles

In the second experiment, we considered the extensibility of our fusion formulation on track-
ing motions with various styles. The test sequence is from HumanEva-II S4 Combo, which
contains the activities of walking, jogging and balancing. However, no training data is avail-
able for subject S4. We used the learned walking and jogging models of subject S2 instead.
Note that the activity styles of S4 are very different from the ones of S2.

The experiment is conducted under the same parameters as the first one. The cost of each
tracker during the tracking process is represented in Figure 5. The quantitative comparisons
between different approaches are shown in Figure 6, and the output poses are visualized on
the images of HumanEva-II S4 camera C1 in Figure 7.
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Figure 2: Cost of the two parallel trackers in the tracking of S2. We choose the tracker
with minimum cost at each frame, and update the state of the other one. Note that the
standard APF tracker has lower cost during the transition from Walking to Jogging. This
not only produces smooth pose output, but also helps the GPDM-APF tracker switch motion
models.
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Figure 3: Performance comparison between the fusion approach and the other two
methods on tracking S2.
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Figure 4: Results of tracking S2 by the fusion approach. The recovered body model is
shown projected into the images, with the corresponding 3D error shown underneath.
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Figure 5: Cost of the two parallel trackers in the tracking of S4. Since the motion styles
of the learned model are different from subject S4, the averaging gap between the cost of the
two trackers in the walking and jogging phases are smaller than that in figure 2. At the end of
the sequence, the cost of the GPDM-APF tracker is lower than the other. That is reasonable
because the subject stops balancing and starts walking out of the scene.
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Figure 6: Performance comparison between the fusion approach and the other two
methods on tracking S4.

Frame2 - 53mm Frame116 - 70mm Frame230 - 80mm Frame345 - 72mm Frame459 - 84mm Frame573 - 99mm

Frame687 - 91mm Frame801 - 86mm Frame915 - 70mm Frame1030 - 90mm Frame1144 - 98mm Frame1258 - 66mm

Figure 7: Results of tracking S4 by the fusion approach. The recovered body model is
shown projected into the images, with the corresponding 3D error shown underneath.
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Figure 8: The average error and standard deviation for the sequences produced by the
standard APF, the GPDM-APF and the Fusion approach.

Finally, Figure 8 compares the average error and standard deviation for the testing se-
quences produced by our fusion approach and the other two methods.

7 Conclusion and Future Work
In this paper, we presented a novel fusion formulation to integrate the low- and high-dimensional
approaches into one framework. The proposed formulation not only incorporates the respec-
tive advantages of the two approaches, but also overcome their weakness. The experimental
results demonstrate that our approach can effectively track generic human motion with vari-
ous types and styles. For the computational cost, the overall efficiency only depends on the
slower tracker, i.e. the standard APF, because the time consumption for the fusion is very
small and the two trackers are in parallel. We consider that the computational cost can still
be improved in the future.

The fusion criteria are very easy to be extended to support a variety of rules and strategies.
In our experiments, basic rules are defined based on the results of the cost function and
manually set thresholds. However, more flexible fusion criteria could be probably embedded
by considering the tracking history. In the future, an online learning module will be provided
for better fusion guidance.
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