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Many observable data sets can be modeled by a mixture of manifolds
[2]. For example, for handwritten digits, each digit forms its own mani-
fold in the feature space. For human faces, the face images of the same
person under different conditions lie on the same manifold and different
persons are associated with different manifolds. Many works focused on
the case of hybrid linear modeling, i.e., one linear model for each homoge-
neous subset of data [1, 6]. Recently, many group sparsity regularization
methods have been presented such as group lasso [5] and so on.

In this paper, we propose a novel algorithm to learn multiple linear
manifolds based on group sparsity and non-negative matrix factorization.
Via the group sparsity constraint imposed on the column vectors of the
coefficient matrix, we obtain multiple linear manifolds each of them be-
longs to a particular class. We adopt the l1/l2 regularizer for the objective
function to yield group sparsity. For a test image, we represent it as a
linear combination of the learned linear manifolds, and then the represen-
tation is naturally group sparse: only the coefficients corresponding to the
same class are nonzero. The proposed algorithm achieves good recogni-
tion rates on face images with varying illuminations and expressions.

Given a data matrix X = [x1,x2, . . . ,xn] ∈ ℜ
m×n
+ , Our GSNMF also

aims to find two non-negative matrices W ∈ ℜ
m×r
+ and H ∈ ℜ

r×n
+ . As-

suming the number of manifolds is K, and the dimension of each mani-
fold is p. Thus r = K× p in our scheme. For the j-th column vector h j
of H, it can be divide into K groups Gk,k = 1, ...,K, and each group has
p coefficients. Given a grouping G of the column vector h j of H, the kth
group norm ‖Gk‖2 is given by
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α∈Gk
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α j
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2

, (1)

where ‖ · ‖2 is l2 norm. Then the group sparsity for the column h j( j =
1, ...,n) of coefficient matrix H is defined by

‖h j‖G1 = ∑
k
‖Gk‖2 = ∑

k
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) 1
2

, (2)

where ‖ · ‖1 is l1 norm. ‖h j‖G1 is the l1/l2 regularizer of the vector h j .
After the l1/l2 regularizer on the column vectors of the coefficient

matrix H, the corresponding basis matrix W is expected to be composed
of multiple linear manifolds each of which belongs to a particular class.
GSNMF minimizes the distance objective function combining the l1/l2
regularizer as follows

O = ‖X−WH‖2
F +λ

n

∑
j=1
‖h j‖G1 , s.t. W ≥ 0,H ≥ 0, (3)

where the regularization parameter λ controls the smoothness of the new
representation.

The updating rules of Eq. (3) can easily be achieved as follows

Ht j← Ht j
(W T X)t j

(W TWH)t j +
λHt j

2
√

∑
t,α∈Gk
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α j

, (4)

Wit ←Wit
(XHT )it

(WHHT )it
. (5)

The convergence of the updating formula can be proved using the
similarity method in [4] with the auxiliary function.

In theory, NMF unavoidably converges to local minima [4], and the
solution to Eq. (3) is not unique under such constraints. We will give
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Figure 1: Basis vectors learned from the face images in ORL database.
(a) shows the first 25 Eigenfaces, (b) shows 25 NMF faces, and (c) shows
25 GSNMF faces.

a proper initialization in order to improve the performance of GSNMF
either for consideration of computational complexity or for the learning of
multiple linear manifolds. The initialization is given as follows. For each
class, we learn a basis matrix Wi ∈ℜm×p,(i = 1, ...,K) from the training
data by NMF. Then W can be initialized by W = [W1,W2, ...,WK ], where
K is the number of manifolds. At the same time, in order to enforce the
multiple linear manifolds learning, the corresponding coefficient matrix
is initialized by

Hi j =


δ/p di/pe= d j/qe

(1−δ )/(r− p) otherwise
, (6)

where dxe is the ceiling function which rounds x to the nearest integers
towards infinity, p is the dimension of each manifold, q is the number of
the training data for each class, r = K× p and δ > 0 is close to 1.

After the matrix factorization, we gain a nonnegative basis matrix W
and the coefficient matrix H. Ideally, each column in the matrix W should
represent a human subject. We visualize these basis learned by PCA,
NMF, SNMF and GSNMF in Figure 1. We can easily see that GSNMF
learns private representation for each class varying in facial expression,
eye wear, pose and lighting (Each column in Figure 1 (c) belongs to a
manifold). The main reason is that group sparsity constraint imposed on
the coefficient matrix H leads to multiple linear manifolds in W . For
face recognition on the ORL, Yale and Extended Yale B databases, our
algorithm GSNMF outperforms Principal Component Analysis (PCA),
the original NMF [4] and the Sparse NMF (SNMF) [3].
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