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1 Introduction

This document contains the supplementary material for the main conference article by the
same title. The main purposes of this material are to show the derivations of key equations
for probabilistic inference and to present more qualitative experimental results. Note that this
document is not self-contained in that it references the main article in a number of places.

2 Variational Inference

Variational inference [5] is an approximate Bayesian inference scheme. The main idea is to
minimise the Kullback–Leibler divergence between the full joint distribution over all latent
variables in a model (which is difficult to compute) and an approximating distribution over
the model variables (which is easy to compute). The approximating distribution usually
factorises at least partially in the variables of the model. In this case it can be shown that
updating (optimising) each factor while keeping the other factors fixed strictly improves an
upper bound on the divergence between the true and approximating distributions.

In this section we derive the update equations used to infer posterior beliefs over the class
of each pixel in an image, and over the discrete and continuous palettes associated with each
class in an image.

2.1 Full Generative Model

In an image, I, each pixel belongs to a discrete class, zIxy, which determines the colour
model used to generate the colour of the pixel, ~cxy. The classes are skin, hair, clothing and
background. The x and y subscripts are the coordinates of the pixel. The class of a pixel is
generated from a discrete distribution with parameters ~π(z)

xy .

There is also a Markov random field (MRF) dependence between neighbouring class
pixels. The neighbours of a pixel are the 4 pixels to the north, south, east and west of it. A
pixel is conditionally independent of all other pixels given its neighbours.

The model described above is referred to as a coherent probabilistic index map (CPIM) in
the main article. According to the CPIM model, the class labels in each image are generated
according to

PCPIM

(〈
zIxy
〉∣∣∣〈~π(z)

xy

〉
,kMRF

)
=

[
∏
x,y

[
~π
(z)
xy

]
zIxy

]
exp

(
kMRF ∑

(xy,uv)∈C
I [zIxy = zIuv]

)
(1)

C denotes the set of pairwise cliques — i.e. the set of neighbours. The square bracket
notation [~π]a is used to refer to the value in vector ~π at index a. This is equivalent to writing
πa; the square bracket notation is used to aid legibility.

Citation
Citation
{Jordan, Ghahramani, Jaakkola, and Saul} 1999



SCHEFFLER AND ODOBEZ: ADAPTIVE COLOUR MODELLING AND SEGMENTATION 3

There are two types of palettes (colour models), viz. discrete and continuous. Each dis-
crete palette is represented by a discrete probability vector, ~π(c)

Ik , and is generated from a
Dirichlet prior with parameter ~αk. The discrete palette for class k in image I is generated
according to

Ppal:disc

(
~π
(c)
Ik

∣∣∣~α(c)
k

)
= Dirichlet

(
~π
(c)
Ik

∣∣∣~α(c)
k

)
(2)

For a pixel at coordinates (x,y) that belongs to class zIxy = k, its colour, ~cIxy, is drawn
from the discrete probability vector ~π(c)

Ik .

Pcol:disc

(
~cIxy

∣∣∣~π(c)
Ik

)
= v−1

bin

[
~π
(c)
Ik

]
bin(~cIxy)

(3)

Here bin(·) is the function that maps a colour vector to its bin in the colour histogram and
vbin is the volume of each bin in colour space. Dividing by the volume ensures that the distri-
bution over colour vectors is normalised. Each colour vector is a RGB triple (see Section 6
for details on colour spaces). The colour space is discretised into uniformly distributed cubes
in RGB space. In this work 16 bins are used per colour dimension, for a total of 163 = 4096
bins.

Each continuous palette is represented by a normal distribution over colour components
in YPbPr colour space (see Section 6). This 3-dimensional normal distribution has inde-
pendent components, where each component is parametrised by its mean, µ j, and precision
(inverse variance), λ j. The continuous palette for class k in image I is generated according
to

Ppal:cont

(
~µ

(c)
Ik ,~λ

(c)
Ik

∣∣∣~η(c)
k ,~τ

(c)
k ,~α

(c)
k ,~β

(c)
k

)
=

3

∏
j=1

Normal
(

µ
(c)
Ik j

∣∣∣η(c)
k j ,(τ

(c)
k j λ

(c)
Ik j )
−1
)

Gamma
(

λ
(c)
Ik j

∣∣∣α(c)
k j ,β

(c)
k j

)
(4)

where the gamma distribution is parametrised by its shape, α , and inverse length scale, β .1

For a pixel at coordinates (x,y) that belongs to class zIxy = k, its colour, ~cIxy, is drawn
from the normal distribution defined by ~µ(c)

Ik and~λ (c)
Ik .

Pcol:cont

(
~cIxy

∣∣∣~µ(c)
Ik ,~λ

(c)
Ik

)
=

3

∏
j=1

Normal
(

cIxy j

∣∣∣µ(c)
Ik j ,(λ

(c)
Ik j )
−1
)

(5)

where~cIxy is a vector in YPbPr colour space.

1Note that the gamma distribution is often parametrised by shape, k = α , and length scale, θ = β−1, parameters
instead.
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Given equations (1)–(5), the full generative model for a set of images is

∏
I∈images

[
PCPIM

(〈
zIxy
〉∣∣∣〈~π(z)

xy

〉
,kMRF

)
Ppal:disc

(
~π
(c)
I,cloth

∣∣∣~α(c)
cloth

)
Ppal:disc

(
~π
(c)
I,back

∣∣∣~α(c)
back

)
Ppal:cont

(
~µ

(c)
I,skin,

~λ
(c)
I,skin

∣∣∣~η(c)
skin,~τ

(c)
skin,~α

(c)
skin,

~β
(c)
skin

)
Ppal:cont

(
~µ

(c)
I,hair,

~λ
(c)
I,hair

∣∣∣~η(c)
hair,~τ

(c)
hair,~α

(c)
hair,

~β
(c)
hair

)
∏
x,y

[
Pcol:disc

(
~cIxy

∣∣∣zIxy = cloth,~π(c)
I,cloth

)I[zIxy=cloth]

Pcol:disc

(
~cIxy

∣∣∣zIxy = back,~π(c)
I,back

)I[zIxy=back]

Pcol:cont

(
~cIxy

∣∣∣zIxy = skin,~µ(c)
I,skin,

~λ
(c)
I,skin

)I[zIxy=skin]

Pcol:cont

(
~cIxy

∣∣∣zIxy = hair,~µ(c)
I,hair,

~λ
(c)
I,hair

)I[zIxy=hair]
]]

(6)

I[·] is the indicator function, which evaluates to 1 if its argument is true and 0 if it is false.
The indicator function is used to switch on exactly one of the Pcol distributions, depending
on the value of zIxy.

Note that in this model skin and hair palettes are continuous, while clothing and back-
ground palettes are discrete. For experiments where skin and hair also have discrete palettes,
their factors should be adjusted appropriately in (6).

The prior hyper-parameters of this model are
〈
~π
(z)
xy

〉
, kMRF, ~α(c)

cloth, ~α(c)
back, ~η(c)

skin, ~τ(c)skin,

~α
(c)
skin, ~β (c)

skin, ~η(c)
hair,~τ

(c)
hair, ~α

(c)
hair,

~β
(c)
hair. Section 3 describes how their values were determined.

2.2 Approximating Distribution
The approximating distribution over the latent variables — which will be used in the varia-
tional inference framework, to produce an approximate posterior distribution — is

∏
I∈images

[[
∏
x,y

qclass (zIxy)

]
qcloth

(
~π
(c)
I,cloth

)
qback

(
~π
(c)
I,back

)
qskin

(
~µ

(c)
I,skin,

~λ
(c)
I,skin

)
qhair

(
~µ

(c)
I,hair,

~λ
(c)
I,hair

)]
(7)

with

qclass(zIxy) = Discrete
(

zIxy

∣∣∣~γ(z)Ixy

)
= ∏

k∈classes

[
~γ
(z)
Ixy

]I[zIxy=k]

k
(8)
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and
qk

(
~π
(c)
Ik

)
= Dirichlet

(
~π
(c)
Ik

∣∣∣~γ(c)Ik

)
(9)

for k ∈ {cloth,back}, and

qk

(
~µ

(c)
Ik ,~λ

(c)
Ik

)
=

3

∏
j=1

Normal
(

µ
(c)
Ik j

∣∣∣η ′Ik j,(τ
′
Ik jλ

(c)
Ik j )
−1
)

Gamma
(

λ
(c)
Ik j

∣∣∣α ′Ik j,β
′
Ik j

)
(10)

for k ∈ {skin,hair}. The prime notation in the last equation is used to distinguish between
the variational inference parameters and the prior hyper-parameters for continuous palettes.

2.3 Variational Update Equations

To derive the update equations for each approximating factor in (7), we compute the expec-
tation of the log generative model under the variational beliefs over all other latent variables.
See Chapter 8 of [2] for a proof of the validity of this procedure in general.

2.3.1 Update for Class Variables

In all of the equations in this sub-section, const refers to a term independent of k, and Θ
(c)
Ik

is a placeholder for either discrete (9) or continuous (10) palette parameters. For each I, x, y
and k,

log
[
~γ
(z)
Ixy

]
k

= const+ log
[
~π
(z)
xy

]
k
+
∫

Θ
(c)
Ik

qk

(
Θ

(c)
Ik

)
logPcol

(
~cIxy

∣∣∣Θ(c)
Ik

)
+ ∑

zI,x−1,y

qclass(zI,x−1,y) ∑
zI,x+1,y

qclass(zI,x+1,y)

{

∑
zI,x,y−1

qclass(zI,x,y−1) ∑
zI,x,y+1

qclass(zI,x,y+1) kMRF ∑
(xy,uv)∈C

I [zIuv = k]
}

= const+ log
[
~π
(z)
xy

]
k
+
∫

Θ
(c)
Ik

qk

(
Θ

(c)
Ik

)
logPcol

(
~cIxy

∣∣∣Θ(c)
Ik

)
+ kMRF ∑

(u,v)∈Cxy

[
~γ
(z)
Iuv

]
k

(11)

where Cxy = {(x−1,y),(x+1,y),(x,y−1),(x,y+1)} is the set of neighbouring locations
to (x,y). For discrete palettes, k ∈ {cloth,back},∫

Θ
(c)
Ik

qk

(
Θ

(c)
Ik

)
logPcol:disc

(
~cIxy

∣∣∣Θ(c)
Ik

)
=

∫
~π
(c)
Ik

qk

(
~π
(c)
Ik

)[
log
[
~π
(c)
Ik

]
bin(~cIxy)

− logvbin

]
= Ψ

([
~γ
(c)
Ik

]
bin(~cIxy)

)
−Ψ

(
∑

j

[
~γ
(c)
Ik

]
j

)
− logvbin (12)

Citation
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For continuous palettes, k ∈ {skin,hair},

∫
Θ
(c)
Ik

q
(

Θ
(c)
Ik

)
logPcol:cont

(
~cIxy

∣∣∣Θ(c)
Ik

)
=

∫
~µ
(c)
Ik

∫
~λ

(c)
Ik

qk

(
~µ

(c)
Ik ,~λ

(c)
Ik

)( 3

∑
j=1

logNormal
(

cIxy j

∣∣∣µ(c)
Ik j ,(λ

(c)
Ik j )
−1
))

= −1
2

3

∑
j=1

∫
µ j

∫
λ j

Normal
(
µ j
∣∣η ′Ik j,(τ

′
Ik jλ j)

−1)
Gamma

(
λ j
∣∣α ′Ik j,β

′
Ik j
)(

log2π− logλ j +λ j(cIxy j−µ j)
2)

= −1
2

3

∑
j=1

∫
λ j

Gamma
(
λ j
∣∣α ′Ik j,β

′
Ik j
)

(
log2π− logλ j +λ j((τ

′
Ik jλ j)

−1 +(cIxy j−η
′
Ik j)

2)
)

= −1
2

3

∑
j=1

∫
λ j

Gamma
(
λ j
∣∣α ′Ik j,β

′
Ik j
)

(
log2π− logλ j + τ

′
Ik j
−1

+λ j(cIxy j−η
′
Ik j)

2
)

= −1
2

3

∑
j=1

(
log2π− (Ψ(α ′Ik j)− logβ

′
Ik j)+ τ

′
Ik j
−1

+
α ′Ik j

β ′Ik j
(cIxy j−η

′
Ik j)

2

)
(13)

Ψ(·) is the digamma function.

2.3.2 Update for Discrete Palettes

The distributions over palettes are independent in both the generative model and the approx-
imating distribution, when conditioned on the observed colours,

〈
~cIxy
〉

and the class labels,〈
zIxy
〉
. Because of this independence most factors in the log generative distribution (6) fold

into an additive constant. For each I and each k referring to a class with a discrete palette,

logqk

(
~π
(c)
Ik

)
= const+∑

zI11

· · · ∑
zIMN

[
∏
x,y

qclass (zIxy)

]
[

logDirichlet
(
~π
(c)
Ik

∣∣∣~α(c)
k

)
+∑

x,y
log
[
~π
(c)
I,zIxy

]
bin(~cIxy)

]

= const+ ∑
b∈bins

[~α(c)
k

]
b
+ ∑

x,y:
bin(~cIxy)=b

[
~γ
(z)
Ixy

]
k

 log
[
~π
(c)
Ik

]
b

(14)
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The last step follows from rearranging sums. Since (14) has the same parametric form as the
log of a Dirichlet distribution, qk

(
~π
(c)
Ik

)
is a Dirichlet distribution with parameter[

~γ
(c)
Ik

]
b
=
[
~α

(c)
k

]
b
+ ∑

x,y:
bin(~cIxy)=b

[
~γ
(z)
Ixy

]
k

(15)

This update rule states that we add the expected counts for each colour in the class being
updated to the vector of prior Dirichlet counts.

2.3.3 Update for Continuous Palettes

Since the three colour dimensions are independent, we consider them one at a time indexed
by j = 1,2,3. For each I and each k referring to a class with a continuous palette,

logqk

(
µ
(c)
Ik j ,λ

(c)
Ik j

)
= const+∑

zI11

· · · ∑
zIMN

[
∏
x,y

qclass (zIxy)

]
[

logNormalGamma
(

µ
(c)
Ik j ,λ

(c)
Ik j

∣∣∣η(c)
k j ,τ

(c)
k j ,α

(c)
k j ,β

(c)
k j

)
+

∑
x,y

logNormal
(

cIxy j

∣∣∣µ(c)
Ik j ,(λ

(c)
Ik j )
−1
)]

= const−
τ
(c)
k j λ

(c)
Ik j

2

(
µ
(c)
Ik j−η

(c)
k j

)2
−β

(c)
k j λ

(c)
Ik j +

(
α
(c)
k j −

1
2

)
logλ

(c)
Ik j

+
S(0)Ik

2
logλ

(c)
Ik j −

λ
(c)
Ik j

2

(
S(0)Ik (µ

(c)
Ik j)

2−2S(1)Ik jµ
(c)
Ik j +S(2)Ik j

)
(16)

where

S(0)Ik = ∑
x,y
[~γ

(z)
Ixy]k

S(1)Ik j = ∑
x,y
[~γ

(z)
Ixy]k cIxy j (17)

S(2)Ik j = ∑
x,y
[~γ

(z)
Ixy]k c2

Ixy j

Since (16) has the same parametric form as logqk

(
µ
(c)
Ik j ,λ

(c)
Ik j

)
, the update equations can be

written down directly.

τ
′
Ik j = τk j +S(0)Ik

α
′
Ik j = αk j +S(0)Ik /2

η
′
Ik j =

ηk jτk j +S(1)Ik j

τ ′Ik j
(18)

β
′
Ik j = βk j +

1
2

(
S(2)Ik j +η

2
k jτk j−η

′
Ik j

2
τ
′
Ik j

)
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2.3.4 Summary

Using the update equations above in an iterative scheme, marginal beliefs are computed over
the following variables.

• The class of each pixel, zIxy, with posterior

Discrete
(

zIxy

∣∣∣~γ(z)Ixy

)
.

• The discrete palette (i.e. normalised histogram) for each discrete class, ~π(c)
Ik with pos-

terior
Dirichlet

(
~π
(c)
Ik

∣∣∣~γ(c)Ik

)
.

• The continuous palette for each continuous class, a normal distribution parameterised
by ~µ(c)

Ik and (~λ
(c)
Ik )−1, with posterior

3

∏
j=1

NormalGamma
(

µ
(c)
Ik j ,λ

(c)
Ik j

∣∣∣η ′Ik j,τ
′
Ik j,α

′
Ik j,β

′
Ik j

)
.

3 Setting the Prior Parameters

3.1 Class Variables
The discrete prior probability vector representing the belief that the pixel at coordinates (x,y)
in the window around a face detection belongs to a particular class

~π
(z)
xy (19)

is computed as the posterior when taking a Dirichlet hyper-prior of

Dirichlet
(
~π
(z)
xy

∣∣∣C−1~1
)

(20)

where C = 4 is the number of classes and ~1 is a length-C vector of ones. Computing the
likelihood simply involves counting the number of times that the pixel appears in each class
in the labelled training data. This gives

π
(z)
xyz =

Nxyz +C−1

∑z′ Nxyz′ +1
(21)

where Nxyz is the number of times that the pixel at coordinate (x,y) appeared in class z in the
training data.

3.2 Discrete Palettes
Referring to Figure 1 in the main article, we want to estimate the Dirichlet hyper-parameter
~α

(c)
k based on pixels from the palette under consideration. Firstly, note that there is a la-

tent vector for each image, ~π(c)
Ik , which can be integrated out analytically. The resulting
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distribution (over counts of the number of times that each discrete colour appears in an
image) is known as the Pólya distribution or the Dirichlet–multinomial distribution. See
[6] for details on the derivation of the Pólya distribution and the procedure for estimat-
ing ~α

(c)
k from observed counts. The parameter estimation was modified slightly to deal

with the large dimensionality of the colour space (it has 163 = 4096 dimensions). See the
polya_distribution.py file in the source code [1] for a Python implementation.

3.3 Continuous Palettes
To set the prior parameters over continuous colour distributions we do a maximum likelihood
fit to training data. For each of the N skin colour images in the Compaq database [4], compute
the sample mean, µn j, and inverse variance, λn j, of the skin pixels in the image for all 3
colour dimensions. Images are indexed by n and colour dimensions by j. Then take all
sample means and inverse variances across the database as samples from the prior (4) and fit
the prior parameters, ~η ,~τ,~α,~β , using maximum likelihood. By setting the derivatives of the
log prior distribution to zero, the maximum likelihood setting can be found as

η j =
1

S(λ )j
∑
n

λn jµn j (22)

τ j =
N

∑n λn j(µn j−η j)2 (23)

logα j−Ψ(α j) = log(S(λ )j /N)− 1
N ∑

n
logλn j (24)

β j = Nα j/S(λ )j (25)

where
S(λ )j = ∑

n
λn j. (26)

Note that (24) is an implicit equation in α j, which is solved using a numerical root finder.

4 More Experimental Results
The figure on page 10 show some more face colour segmentation results, which were not
included in the main article due to space constraints. These results are provided here without
comment, to give a qualitative overview of the reliability of the model output. In each row,
the first column shows the input face image (as located by the face detector [3]); the second
column shows the segmentation result when the Markov random field (MRF) is off (kMRF =
0); the third column when the MRF is on (kMRF = 3) and continuous palettes are used for
skin and hair; the final column when the MRF is on and discrete palettes are used for skin and
hair. Red represents hair pixels, yellow skin, green clothing, and blue background. White
pixels remained unclassified. Pixels were classified only if the posterior probability of the
pixel belonging to a class was at least 0.75.

The figure on page 11 shows a visualisation of the prior belief over skin palettes. The
figure on page 12 shows a visualisation of the prior belief over hair palettes. Note that the
individual samples from each of these two distributions are quite distinct. Contrast this with
the figure on page 13, showing samples from the posterior distributions, where the samples
are all very similar.
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Y Pb

0 1
µ

9

426
λ

0 1
µ

162

12871

λ

Pr

0 1
µ

114

8064

λ

The prior belief over skin palettes. Each plot shows a probability distribution (belief) over
the mean (µ) and inverse variance (λ ) of the normal distribution over a colour component.
The three colour components are luminance (Y), blue (Pb) and red (Pr).

Samples from the prior skin distribution. Each sample is a distribution over colours, repre-
sented here by a plot where the area devoted to each colour is proportional to its probability
of being observed.
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Y Pb

0 1
µ

1

1807

λ

0 1
µ

24

32509

λ

Pr

0 1
µ

17

25789

λ

The prior belief over hair palettes. Each plot shows a probability distribution (belief) over
the mean (µ) and inverse variance (λ ) of the normal distribution over a colour component.
The three colour components are luminance (Y), blue (Pb) and red (Pr).

Samples from the prior hair distribution. Each sample is a distribution over colours, repre-
sented here by a plot where the area devoted to each colour is proportional to its probability
of being observed.
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The test image.

Samples from the posterior skin distribution.

Samples from the posterior hair distribution.

Samples from the posterior clothing distribution.

Samples from the posterior background distribution.
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5 Probability Distributions
The following probability distributions are used in this article. They are stated here for
completeness and to make their parametric forms explicit. Note that in the equations below,
Γ(·) is the gamma function.

Normal
(
x
∣∣µ,σ2) =

1√
2πσ

exp
(
− (x−µ)2

2σ2

)
with x,µ ∈ R and σ ∈ R+ (27)

Gamma(x |α,β ) =
β α

Γ(α)
xα−1e−βx with x,α,β ∈ R+ (28)

NormalGamma(µ,λ |η ,τ,α,β ) = Normal
(
µ
∣∣η ,(τλ )−1)Gamma(λ |α,β ) (29)

Dirichlet(~x |~α) =
Γ(∑d

i=1 αi)

∏
d
i=1 Γ(αi)

d

∏
i=1

xαi−1
i

with xi,αi ∈ R+ ∀i = 1, . . . ,d

and
d

∑
i=1

xi = 1 (30)

Pólya(~n |~α) =
Γ(∑d

i=1 αi)

Γ
(
∑

d
i=1(ni +αi)

) d

∏
i=1

Γ(ni +αi)

Γ(αi)

with ni ∈ N0 and αi ∈ R+ ∀i = 1, . . . ,d (31)

6 Colour Spaces

6.1 RGB
This is the standard colour space used for computer displays, rescaled linearly from the range
[0,255] such that

R,G,B ∈ [0,1] (32)

In this article, the RGB colour space is used for discrete colour models.

6.2 YCbCr / YPbPr

These two colour spaces are simply scaled differently. YCbCr is used in the JPEG compres-
sion scheme.

Y,Cb,Cr ∈ [0,255] (33)
Y,Pb,Pr ∈ [0,1] (34)

 Y
Pb
Pr

=

 0.299 0.587 0.114
−0.168736 −0.331264 0.5

0.5 −0.418688 −0.081312

 R
G
B

+
 0

0.5
0.5

 (35)

In this article, the YPbPr colour space is used for continuous colour models.
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