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Abstract

Face recognition is a challenging task, especially when low-resolution images or im-
age sequences are used. A decrease in image resolution results in a loss of facial high
frequency components leading to a decrease in recognition rates. In this paper, we pro-
pose a new method for super-resolution by building a dictionary of high-frequency com-
ponents in the facial data, which are added to a low-resolution input image to create a
super-resolved image. Our method is different from existing methods as we estimate
the high-frequency components, rather than studying the direct relationship between the
high- and low-resolution images. Quantitative and qualitative results are reported for
both synthetic and surveillance facial image databases.

1 Introduction
Recent advances in electronics, sensors, and optics have led to the widespread availability of
video-based surveillance and monitoring systems. Many applications, ranging from security
to broadcasting, are driving the need for better recognition of individuals from surveillance
videos [1]. This requirement poses new challenges to the already difficult task of face recog-
nition. In typical surveillance scenarios, cameras are often at a considerable distance from
the subjects [19]. Hence, the captured image typically contains only a small region sur-
rounding the subject’s face, often characterized by a small interpupillary distance (IPD).
This attribute usually leads to poor recognition rates. In order to maintain the robustness of
face recognition at a distance (FRAD) systems, it is important to find a solution to this dif-
ficult task [1]. For many 2D face recognition (FR) systems, image resolution is the critical
factor that affects its ability to detect key elements of facial anatomy (e.g., eyes, lip corners,
facial contours) [19].

Many super-resolution (SR) approaches have attempted to minimize the mean-squared-
error (MSE) or maximize the signal-to-noise ratio (SNR) between the original high-resolution
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Figure 1: Depiction of the proposed framework for SR reconstruction. In the dictionary-
learning stage, we extract the high-frequency components from a database of HR images
and synthetically generated LR images, and build dictionaries for the LR and HR datasets
(Sec. 3.3). In the reconstruction stage, the high-frequency components of the input LR
image are used to compute a sparse representation with respect to the dictionary and use this
representation to reconstruct a SR image (Sec. 3.4).

(HR) and reconstructed SR images [4]. However, in face recognition, these SR approaches
may not perform well, as most FR systems rely on the ability to identify key facial features,
typically captured by the high-frequency content. Obtaining a higher SNR does not necessar-
ily contribute to a higher recognition rate since high fidelity reconstruction of low-frequency
content may dominate the image.

We propose a new approach to obtain a SR image by first learning the high-frequency
components of the HR facial images and then applying them to a given low-resolution (LR)
image to create the super-resolved image (Fig. 1). In the training stage, we use a Dual Tree
Complex Wavelet Transform (DT-CWT) [13] to extract the high-frequency components from
a database of HR facial images and synthetically generate the LR images. A dictionary is
built with the high-frequency components for each of the databases, both HR and LR. In
the reconstruction stage, we compute a sparse representation of the input LR image using
the dictionary built for LR images and estimate the HR high-frequency components using
that sparse representation with respect to the HR dictionary. The estimated high-frequency
components of the HR image are then added to the LR input image to create an SR image.
Instead of using the whole facial image, we divide it into patches which overlap to avoid the
“block effect" artifacts during reconstruction.

Our contributions are: (i) we have introduced the use of DT-CWT in a sparse representa-
tion framework for SR reconstruction, and (ii) we have introduced a framework to reconstruct
a SR facial image using high-frequency components (even if images of the subject are not
available in the training set).

The rest of this paper is organized as follows: Section 2 describes previous work, while
in Section 3 we provide a detailed description of the proposed method (UHSR). In Section
4, we evaluate the proposed method on facial databases using extensive experiments and
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compare its performance with other state-of-the-art SR methods. Section 5 summarizes our
findings.

2 Previous Work

In recent years, many methods have been proposed that address the issue of image resolution.
Existing SR algorithms may be roughly classified into two classes: multi-frame-based and
example-based algorithms. The methods in the first class attempt to compute a HR image
from a set of LR images from any domain [4], while the methods in the second class attempt
to find a HR counterpart of a single LR image from a known domain [2, 6, 12, 14, 18]. We
are interested in domain-specific SR for face recognition. In addition, the SR algorithms for
facial images usually differ in the way the a priori knowledge of facial images is applied.
Hallucinating LR facial images was proposed by Baker et al. [2]. In that approach, an image
pyramid was built to learn the prior. Liu et al. [12] proposed a two step approach in which
principal component analysis (PCA) was first used to obtain the global HR image and a
patch-based non-parametric Markov network was then used to learn the residual image. Li
et al. [11] extended the work of Baker et al. [2] to a two step approach where PCA was
applied on both, the HR and LR images, to obtain a global HR image. An MRF prior was
used to learn the residual in the second step. Jia et al. [9] developed a tensor-based SR
method where a tensor of the HR and LR images is built in the training step to reconstruct
a super-resolved image. Simultaneous SR and feature extraction for FR was proposed by
Hennings [7] to estimate a SR image by searching for similar features of the LR image
in the training set. However, this method uses the relationship between the HR and LR
image, and its performance depends on the training dataset. Yang et al. [21] introduced a
method to reconstruct SR images using a sparse representation of the input LR images. SR
reconstruction based on wavelet analysis has been shown to be well suited for reconstruction,
denoising and deblurring, and has been used in a variety of application domains including
biomedical [8], biometrics [3], and astronomy [20]. In addition, it may be used to obtain a
sparse representation of images that have smooth regions with isolated abrupt changes [15].

In our method, we propose to take advantage of the wavelet decomposition-based rules
in conjunction with sparse representation and dictionary learning techniques to improve face
recognition rates. Unlike the other methods [2, 12, 21], the performance of UHSR is opti-
mized with respect to the FR task, rather than with respect to a visually plausible output or a
lower mean-squared-error (MSE).

3 Methodology

3.1 Overview of Super-Resolution Reconstruction based on
Multi-Resolution Decomposition

The relationship between a degraded LR image, Y , and the HR image, X , can be described
as:

Y = HX +η , (1)

where H is the linear transformation matrix, that downsamples, blurs and transforms image
X , and η represents the additive i.i.d. Gaussian with zero mean noise. To estimate image X ,
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Equation 1 can be written as:

H†Y −H†
η = H†HX , (2)

where H† denotes the pseudo-inverse of H. In general, H†HX 6= X , and therefore,

X−H†HX = ΓX ,

where ΓX is the information that is lost during the pseudo-inverse transformation. Let Ỹ =
H†Y . Then, Eq. 2 can be written as:

X = Ỹ +H†
η +ΓX .

Next, we formulate the relationship between the LR- and HR-images using the high- and
low-frequency components. Let Ψ = [Ψβ Ψθ ] be an operator that extracts a high- and low-
frequency components (β X = Ψβ X and θ X = Ψθ X , respectively) of an image; i.e.,

[β X θ X ]
T = ΨX .

Assuming that Ψ is orthonormal, by applying inverse of Ψ on both sides, the original image,
X , can be reconstructed. By splitting the high- and low-frequency components as:

Ψ
−1([β X 0]T +[0 θ X ]

T ) = X , (3)

where 0 is a vector with its elements being zero, Eq. 3 can be also written as:

X = Ψ
−1([β 0]T )+Ψ

−1([0 θ ]T ) . (4)

Let Ψ
−1([β 0]T ) be denoted as Y ∗, and Ψ

−1([0 θ ]T ) as G. Then, Eq. 4 can be written as:

X = Y ∗+G , (5)

where Y ∗ contains the low-frequency components of image X , G contains the high-frequency
components of image X , and Y ∗⊥G. Generally, both Y ∗ and Ỹ contain almost similar low-
frequency information, even though their formation processes are different1. Hence, we
assume that ∥∥Y ∗− Ỹ

∥∥
2 ≤ ε , (6)

where ε > 0 is a small value. Let Y ∗ = Ỹ +Λ, where ‖Λ‖2 = ε . Then, Eq. 5 can be reformu-
lated as:

X = Ỹ +G+Λ . (7)

In Eq. 7, G can be estimated using the training set of facial images.

3.2 Complex Wavelet Transform for Super-Resolution
The Dual-Tree Complex Wavelet Transform (DT-CWT) has been extensively used for face
recognition [13]. In our approach, we use the DT-CWT to separate an image into low-
and high-frequency components. To compute DT-CWT, two wavelet trees are developed in

1In our experiments on 1,000 randomly selected facial images from the CMU-MultiPIE dataset, we computed
the average auto-correlation between Y ∗ and Ỹ to be equal to 0.988.
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(a) (b)

Figure 2: Depiction of DT-CWT. (a) The six images are the detail coefficients of the DT-
CWT transformation of a synthetically generated binary image with five circles of different
radii. (b) The coefficients of the DT-CWT transformation of the facial image. Grayscale
intensity values are used to represent the magnitude of the complex wavelet coefficients.

parallel, with the wavelets forming Hilbert pairs. The trees represent the real and imaginary
parts of the wavelet transform. Due to the design of the filter banks that incorporates the
half sample delay, DT-CWT is nearly shift invariant, due to its slight translated filter designs.
Its other main property is directional selectivity (Fig. 2). Let us denote Ψ as the DT-CWT
transformation matrix and Θ as the coefficients of DT-CWT. Then, the DT-CWT of an image
X is represented as:

Θh = ΨX and Θl = ΨLX, (8)

where L is the decimation matrix that resizes the training image X , to the size of image Y .
Since Θ includes both the low- and high-frequency components of an image, we denote

Θ = [Θφ
Θ

ψ ] and Θ
ψ =

[
Θ+15 Θ+45 Θ+75

Θ−15 Θ−45 Θ−75

]
, (9)

where Θ±15,Θ±45,Θ±75 represent the high-frequency components corresponding to the spe-
cific filters at the respective angles (±15◦,±45◦,±75◦), and Θφ are the low frequency com-
ponents. The result of applying the DT-CWT on sample images is depicted in Fig. 2. It can
be observed that each wavelet subband responds strongly to a specific orientation, and 2D
DT-CWT can discriminate between positive and negative orientations, which is one of the
important features that makes it suitable for FR.

Let {x1, . . . ,xn} ∈ X be a set of n overlapping square patches defined in image X , and
{y1, . . . ,yn} ∈ Y the set of corresponding patches in Y . The wavelet coefficients in Θ are
arranged in blocks according to their spatial correspondence in the original image. Let us
denote the coefficients associated with xi and yi as ~θ

ψ

x,i and ~θ
ψ

y,i, respectively. Each such
structure includes six high-frequency components, corresponding to the six different types
of filters (Eq. 9). We exclude coefficients in Θφ from any further analysis, since they carry
almost no additional information needed for SR reconstruction. The elements of ~θ ψ

x,i and
~θ

ψ

y,i are concatenated in column vectors denoted as, ~θ ψ

i = [~θ
ψ

x,i
~θ

ψ

y,i]
T , which contain high-

frequency components of the LR and HR images. Our next step is to learn a dictionary for
an efficient sparse representation of the patch descriptors ~θ ψ

i .
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3.3 Learning a Coupled Dictionary

Using ~θ
ψ

i , where {~θ ψ

i , . . . ,~θ
ψ
n } ∈ ~Θψ , we build a dictionary Dψ , which assures an results

in sparse-reconstruction of the images in the training set. The size of the dictionary will be
very big if all the patches are used to build it, and will be computationally expensive for
reconstruction. To reduce the computation time, Lee et al. [10] proposed a method to build
compact dictionaries. Note that there is a trade off between the computation time for the
reconstruction, the dictionary size, and the reconstruction error.

Specifically, the dictionary is learnt from a paired input vector, ~θ ψ

i , and should satisfy
the following condition:

Dψ = argmin
Dψ ,~α

∥∥∥~θ ψ

i −Dψ
α i

∥∥∥
2
+λ‖α i‖1 s.t.

∥∥∥Dψ

j

∥∥∥
2
= 1, i = 1,2..n, j = 1,2..K (10)

where K is the number of atoms in dictionary Dψ (K is typically much smaller than the total
number of patches), α i is the representation of ~θ ψ

i , ‖.‖1 is an l1 norm that enforces sparsity,
and l2 normalizes the atoms in the dictionary. The dictionary Dψ and coefficients α i cannot
be simultaneously estimated using convex optimization methods. However, a solution can
be found if either Dψ or α i is fixed. This is accomplished by estimating Dψ iteratively as
presented in Algorithm 1.

Algorithm 1 Dictionary Learning

Input: ~Θψ = {~θ ψ

1 , . . . ,~θ
ψ
n }

Output: Dψ

1: Init Dψ using a Random Matrix
2: for all αi, i = {1, . . . ,n} do
3:

αi = argmin
αi

∥∥∥~θ ψ

i −Dψ
αi

∥∥∥
2
+λ ‖αi‖1 (11)

4: end for
5:

Dψ = argmin
Dψ ,αi

∥∥∥~Θψ −Dψ
αi

∥∥∥
2

s.t
∥∥∥Dψ

j

∥∥∥
2
≤ 1, i = 1,2..,n, j = 1,2, ..K (12)

6: Repeat steps 2 and 5 until convergence.

The vector~θ ψ

i is a paired input (i.e.,~θ ψ

i = [~θ
ψ

x,i
~θ

ψ

y,i]
T ). Thus, the output Dψ = [Dψ

x Dψ
y ]

T

is also paired.
Let Dψ

h be an overcomplete dictionary that contains the high-frequency components of
X . Then, θ

ψ

x,i can be represented as a sparse and linear combination of the atoms in dictionary
Dψ

x . Specifically,
θ̂

ψ

x,i = Dψ
x αi, (13)

where α is a vector of coefficients with very few non-zero entries. Similarly, θ
ψ

y,i can be
represented as a sparse linear combination of atoms in Dψ

y,i as follows:

θ̂
ψ

y,i = Dψ
y αi. (14)
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Two different dictionaries are used to reconstruct the high-frequency components of SR
patch, θ̂

ψ

h,i, where {θ̂ ψ

x,1, . . . , θ̂
ψ
x,n} ∈ Θ̂

ψ
x . The resulting dictionary contains both the dictio-

naries, Dψ
x for HR images and Dψ

y for LR images and hence, is coupled. This coupling,
which enforces the relationship between high- and low-resolution patches, xi and yi, is used
in the reconstruction step, as explained in the following section.

3.4 Super-resolution reconstruction via Sparse Representation
We propose a method that is independent of the relationship between the HR and LR im-
ages, and is nearly shift invariant due to the shift-invariance in feature extraction. Similar to
patch-based methods, our method also reconstructs super-resolved patches from selected LR
patches and a global method is used to remove the artifacts and discontinuities.

Given the high-frequency component of the patch descriptor,~θ ψ

y,i, its sparse-representation,
αi, is obtained by minimizing

min‖αi‖1 s.t
∥∥∥~θ ψ

y,i−Dψ
y α

∥∥∥
2
≤ ε0 , (15)

where ε0 > 0 is a small value, which represents trade-off between reconstruction quality and
sparsity. Reconstructing SR patches individually, using Eq. 15, will introduce discontinuity
artifacts between neighboring patches. To overcome this problem and to enforce the compat-
ibility in the neighboring patches, we use an approach similar to the one proposed by Yang
et al. [22]:

min‖αi‖1 s.t.
∥∥∥~θ ψ

y,i−Dψ
y αi

∥∥∥
2
≤ ε0 and

∥∥∥Ωθ̂
ψ

x,i−ΩDψ
x αi

∥∥∥
2
≤ ε1, (16)

where the operator Ω extracts the regions of overlap between a previously reconstructed SR
patch and the current patch. Using a Lagrange multiplier, Eq. 16 can be written as:

α
∗
i = argmin

αi

∥∥∥~θ ψ

y,i−Dψ
y αi

∥∥∥
2
+
∥∥∥Ω~θ

ψ

x,i−ΩDψ
x αi

∥∥∥
2
+λ ‖αi‖1 (17)

The SR patch can be recovered as:

θ̂
ψ

x,i = Dψ
x α∗i

X̂ = Ψ
−1(ΨL−1Y + Θ̂ψ), Θ̂ψ = {θ̂ ψ

x,1 . . . θ̂
ψ
x,n}

(18)

where L−1 is the upsampling operator.

4 Experimental Results
In order to evaluate the performance of the proposed algorithm, two experiments were per-
formed. We compared the proposed DT-CWT-based SR method (UHSR) with the following
SR algorithms: bicubic interpolation (BCI), Simultaneous Super Resolution and Recognition
(S2R2) [6], and SR via Sparse Representation (SRSR) [22].

For the first set of experiments synthetic data were derived from a single HR image. For
the second test we used a LR video sequence obtained from a surveillance camera installed in
an indoor facility. For face recognition, the PittPatt SDK [16] was used. In both experiments,
we have used only nearly-frontal facial images.
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(a) (b)

Figure 3: a) The rank-one recognition rates for different SR methods for the synthetic
dataset are: 74% for BCI, 76% for S2R2, 77% for SRSR, 82% for UHSR, and 87% for the
original HR image. b) The rank-one recognition rates for the surveillance dataset are: 76%
for BCI, 72% for S2R2, 82% for SRSR, 96% for UHSR, and only 7% for the original LR
image.

Experimental Settings: We leverage the Active Shape Model (ASM) [17] methodology
to detect key anatomical landmarks in each image. ASM may not provide promising results
for LR facial images, especially for real data captured from surveillance cameras. In this
case, we manually annotate the two eye centers. Using the landmark coordinates, we register
all images to a reference image. We used the IPD to define the resolution of the facial image.
The target facial region size of the low resolution images is set to be 24×24 pixels, and the
size for HR image is set to 96× 96 pixels, which corresponds to IPD ≈ 8 pixels and IPD
≈ 32 pixels, respectively.

Experiment 1 - Synthetic LR images: The first set of experiments involved the use of
synthetic LR data derived from a HR image. The CMU MultiPIE [5] database was used for
the this experiment. To create the training dataset we used data from 100 subjects from the
first session. Two different resolution datasets were created for the training dataset with IPD
= 32 pixels and IPD = 8 pixels. The LR images that were generated from session four were
used for testing while the images from second session were used as a gallery. We compared
the recognition rates of BCI, S2R2, SRSR, and UHSR (Fig. 3(a)). The proposed method has
the highest recognition rate and consistently outperformed the other SR methods (Fig. 3(a)).
Rank-r recognition rate in Fig. 3(a) stands for the probability of the correct subject to be
present among r most successful candidates.

Experiment 2 - Recognition at a distance from surveillance video: For the second
set of experiments, we used LR video sequences obtained from a surveillance system that
uses a wide-field camera in an uncontrolled-lighting indoor environment. HR images of 13
subjects were obtained using a DSLR camera in a controlled environment and were used as
gallery. From each video, we selected six frames which were furthest from the surveillance
camera. Figure 3(b) depicts the recognition rates of SR algorithms. The proposed method
exhibited the highest recognition rate and outperformed the other methods in our evaluation.
Figure 4 shows one frame from the surveilled environment and the bounding box denotes
the detected face using PittPatt SDK. These video sequences are very challenging, due to
the presence of motion blur and illumination challenges (Fig. 4(a)). In addition, the training
database contains images obtained at different camera settings, which caused a severe drop in
the performance of S2R2 and SRSR. Therefore, we did not include their results in Fig. 4(d).
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(a)

(b) (c) (d)

Figure 4: Illustration of the surveillance camera output and the SR output. (a) Depiction of
a frame acquired by surveillance camera (the black bounding box indicates successful face
detection), (b) magnification of the area in the bounding box (IPD≈ 11 pixels), (c) output of
BCI, and (d) output of the UHSR algorithm.

.

Figure 4(b) shows the detected face, and Figs. 4(c,d) depict the output of the BCI, and
the UHSR, respectively. For better visualization, we converted the input RGB image into
a YCbCr image, and used the luminance component to create the SR image using UHSR.
After reconstruction we added the chrominance components back to the SR image. Thus, in
Fig. 4(d), there is an illumination difference between BCI and UHSR.

5 Conclusions

This paper introduces a novel method for the super-resolution reconstruction of face images.
The proposed framework combines together two powerful tools: wavelet decomposition and
sparse representations via dictionary learning. The coupled dictionary enforces the relation-
ships between the low- and the high-frequency components of the patch descriptors, and the
wavelet decomposition allows the DTSR to be selective in determining the frequencies and
orientations, thereby optimizing the FR task, specifically. The proposed algorithm can pro-
vide a qualitative output even when the test image is affected by the illumination and has
blur effects due to poor focus or optics. We empirically demonstrated the advantage of the
proposed method compared to several state-of-art super-resolution algorithms for the task of
face recognition.
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