Sparse Representation-based Super-Resolution for Face Recognition At a Distance E. Bilgazyev emilbek@cs.uh.edu B. Efraty baefraty@uh.edu S. K. Shah shah@cs.uh.edu I. A. Kakadiaris ioannisk@uh.edu Dept. of Computer Science University of Houston Houston, TX, 77204-3010 USA Face recognition is a challenging task, especially when low-resolution images or image sequences are used. In typical surveillance scenarios, cameras are often at a considerable distance from the subjects [2]. Hence, the captured image typically contains only a small region surrounding the subject's face, often characterized by a small interpupillary distance (IPD). This decrease in image resolution results in the loss of facial high-frequency components leading to a decrease in recognition rates. Therefore, in order to maintain the robustness of face recognition at a distance (FRAD) systems, it is important to find a solution to this difficult task [1]. In this paper, we propose a new approach to obtain a super-resolved (SR) image by learning the high-frequency components of high-resolution (HR) facial images and applying them to a given low-resolution (LR) image to create the SR image (Fig. 1). In the training stage, we use a Dual Tree Complex Wavelet Transform (DT-CWT) to extract the high-frequency components from a database of HR facial images and synthetically generate LR images. A dictionary is built with the high-frequency components for each of the two databases (HR and LR). In the reconstruction stage, we compute a sparse representation of the input LR image using the dictionary built for LR images and estimate the HR high-frequency components using that sparse representation with respect to the HR dictionary. The estimated high-frequency components of the HR image are then added to the LR input image to create a SR image. Instead of using the whole facial image, we divide it into patches, which overlap to avoid "block effect" artifacts during reconstruction. Figure 1: Depiction of the proposed framework for super-resolution reconstruction. The relationship between a degraded LR image, Y, and the HR image, X, can be described as: $$Y = \mathbf{H}X + \boldsymbol{\eta} \quad , \tag{1}$$ where **H** is the linear transformation matrix, that downsamples, blurs and transforms image X, and η represents and additive i.i.d. Gaussian with zero mean noise. To estimate image X, Eq. 1 can be re-written as: $$X = \tilde{Y} + \mathbf{H}^{\dagger} \boldsymbol{\eta} + \Gamma_X , \qquad (2)$$ where, \mathbf{H}^{\dagger} denotes the pseudo-inverse of \mathbf{H} , $\Gamma_X = X - \mathbf{H}^{\dagger} \mathbf{H} X$ is the information loss, and \tilde{Y} is the upsampled version of the input LR image. Let Ψ be an operator that extracts the high- and low-frequency components of an image. Then, reconstruction of X can be written as: $$X = \Psi^{-1}([\boldsymbol{\beta} \ \boldsymbol{0}]^T) + \Psi^{-1}([\boldsymbol{0} \ \boldsymbol{\theta}]^T) . \tag{3}$$ Combining Eqs. 2-3, the HR image *X* can be estimated as: $$X \approx \Psi^{-1}(\Psi L^{-1}Y + \hat{\Theta}^{\Psi}), \quad \hat{\Theta}^{\Psi} = \{\hat{\theta}_{x,1}^{\Psi} \dots \hat{\theta}_{x,n}^{\Psi}\}, \tag{4}$$ Figure 2: Illustration of the surveillance camera output and the SR output. (a) Depiction of a frame acquired by surveillance camera (the black bounding box output indicates successful face detection), (b) magnification of the area in the bounding box (IPD \approx 11 pixels), (c) output of BCI, and (d) output of the proposed (UHSR) algorithm. where $\hat{\Theta}^{\psi}$ contains the high-frequency components of image X, and L^{-1} is an upsampling operator. To estimate X in Eq. 4, we need to first estimate $\hat{\Theta}^{\psi}$. We estimate it by learning the high-frequency components of the LR and HR images in the training dataset. Let $\{x_1,\ldots,x_n\}\in X$ be a set of n overlapping square patches of the HR image, and $\{y_1,\ldots,y_n\}\in Y$ be the set of corresponding patches of the LR image. Let us denote the high-frequency coefficients associated with x_i and y_i as $\vec{\theta}_{x,i}^{\psi}$ and $\vec{\theta}_{y,i}^{\psi}$, respectively. Using $\vec{\theta}_i^{\,\Psi} = [\vec{\theta}_{x,i}^{\,\Psi} \ \vec{\theta}_{y,i}^{\,\Psi}]^T$, where $\{\vec{\theta}_i^{\,\Psi}, \dots, \vec{\theta}_n^{\,\Psi}\} \in \vec{\Theta}^{\,\Psi}$, we need to build a dictionary \mathbf{D}^{Ψ} , which results in an accurate and sparse-reconstruction of the images in the training set. Specifically, the dictionary is learnt from a paired input vector, $\vec{\theta}_i^{\,\Psi}$, and should satisfy the following condition: $$D^{\Psi} = \underset{D^{\Psi}, \vec{\alpha}}{\arg \min} \left\| \vec{\theta}_i^{\Psi} - D^{\Psi} \alpha_i \right\|_2 + \lambda \|\alpha_i\|_1.$$ (5) In the reconstruction step, given the high-frequency component of the patch descriptor of the input LR image, $\vec{\theta}_{y,i}^{\psi}$, its sparse-representation, α_i , is obtained by minimizing $$\alpha_i^* = \arg\min_{\alpha_i} \left\| \vec{\theta}_{y,i}^{\Psi} - D_y^{\Psi} \alpha_i \right\|_2 + \lambda \left\| \alpha_i \right\|_1.$$ (6) The SR patch is recovered as: $$\hat{\theta}_{x\,i}^{\,\Psi} = D_x^{\,\Psi} \alpha_i^* \,, \tag{7}$$ where $\hat{\theta}_{x,i}^{\Psi}$ is used in Eq. 4 to reconstruct the SR image. We compared the proposed DT-CWT-based SR method (UHSR) with other SR algorithms and empirically demonstrated the advantage of the proposed method compared to several state-of-art super-resolution algorithms for the task of face recognition. - [1] M. Ao, D. Yi, Z. Lei, and S. Z. Li. *Handbook of remote biometrics*, chapter Face Recognition at a Distance: System Issues, pages 155–167. Springer London, 2009. - [2] F.W. Wheeler, X.M. Liu, and P.H. Tu. Multi-frame super-resolution for face recognition. In *Proc.* 1st International Conference on Biometrics Theory, Applications and Systems, pages 1–6, Washington D.C, Sep. 27-29 2007.