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Contour-based representations have a long history in object recognition
and computer vision. Considerable effort was spent in the past matching
geometric shape models of objects to image contours [4, 5, 8]. Although
these approaches enjoyed some success, it is clear that finding contours
exactly belonging to the shape of an object is a hard problem. This insight
has given rise to an emphasis on local texture descriptors, the dominant
approach today. These appearance-based descriptors summarize texture
information in the form of histograms of gradients [6], shape context [2],
geometric blur [3], and many others. While prominent edges are roughly
encoded, exact shape location is replaced by a representation of texture. It
is well known, however, that curvature of contours and junctions provide
crucial shape information [1, 4]. Thus we believe it is time to investigate
a contour representation alongside appearance-based descriptors.

We show that local contour descriptors produce significant gains in
object detection and complement texture descriptors. We propose a con-
tour representation that flexibly encodes junction information and curva-
ture. The representation discretizes contour orientation at an interest point
and records contour intensity at each angle as feature elements. Examples
are shown in Figure 1. In contrast, recent work has parameterized adja-
cent contour segments with a fixed junction degree and a strict ordering of
segments [7]. We also make a distinction with appearance-based descrip-
tors, such as HoG [6], that integrate over orientations in image regions
and produce a texture summary that marginalizes contour detail.

Our contour representation encodes curvature as a non-parametric
distribution over oriented bars, or segments. Understanding contour cur-
vature is important because shape cues concentrate there. This is illus-
trated in Figure 2, where we sampled interest points uniformly over de-
tected edges and computed oriented bar features. We then rendered the
features in order of their contour strength and curvature, and observe that
the object is identifiable after a relatively small number are displayed.

We complement the oriented bar representation of contours with a
texture descriptor collected at each interest point. The oriented bars are a
set of filters F1, . . . ,FD that have an oriented line segment with one end-
point in the filter center. An edge map E is convolved with each of the
filters, creating D channels of contour orientation responses

Bd(x) = ∑
x

E(x−x)Fd(x) . (1)

The channels are sampled at an interest point xi giving the unnormalized
feature b̂i = B1(xi), . . . ,BD(xi).

To describe local texture in the vicinity of interest points, we compute
the geometric blur descriptor [3]. The geometric blur summarizes a signal
under all affine transformations at a point. The descriptor centered at
location x is a convolution with a spatially varying Gaussian kernel

Gx(y) = ∑
x

E(x+ y−x)η(x;α‖x− y‖+β ) . (2)

We sample the descriptor at C locations in concentric rings about the i-th
interest point, giving the unnormalized feature ĝi = Gi(y1), . . . ,Gi(yC).
After normalization, we concatenate the oriented bar and geometric blur
features. Further details can be found in the paper.

We investigate the capabilities of our representation with the common
Hough transform for object detection. The approach is kept general to
remain widely relevant. Features located at xi are matched to a training

Figure 1: Oriented bar codebook learned from edge maps of Ap-
plelogos in the ETHZ dataset.

Figure 2: Shape information is concentrated at points of high cur-
vature. Oriented bar features are ordered and rendered by contour
strength and curvature using 10, 30, 50, 100 and 200 features.

Figure 3: Example detections demonstrating the accuracy and con-
tour localization ability of our representation. Ground-truth boxes
are red and detections are blue.

set and associated with object shift vectors vi. The vectors combine to
cast votes for object position x through a set of discrete scales σ . The
Hough accumulator is then

H(x,σ) =
N

∑
i=1

wi δ (‖xi +σ vi− x‖) , (3)

where δ is the Dirac delta function. This equation has been used numer-
ous times and the weights have been estimated in many ways. Surpris-
ingly, we found in our experiments that uniform weights exceeds many
state-of-the-art voting methods (excluding post-processing verification).

The proposed object representation is evaluated in the context of multi-
scale object detection in cluttered scenes. We perform a rigorous evalu-
ation using the ETHZ shape dataset and INRIA horses. We separately
evaluate our approach on these datasets against several comparable state-
of-the-art approaches. We further show a comparison of our combined
representation against two baselines of only oriented bars or geometric
blur. This isolates any performance gain to our approach. Figure 3 shows
a few detection results. Further qualitative and quantitative results can be
found in the paper. Taken together, they show our approach is an effec-
tive and computationally efficient representation of contours and junctions
that accurately localizes and describes the local shape of contours.
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