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Abstract

Standard digital cameras are sensitive to radiation in the near-infrared domain, but
this additional cue is in general discarded. In this paper, we consider the scene categori-
sation problem in the context of images where both standard visible RGB channels and
near infrared information are available. Using efficient local patch-based Fisher Vector
image representations, we show based on thorough experimental studies the benefit of
using this new type of data. We investigate which image descriptors are relevant, and
how to best combine them. In particular, our experiments show that when combining
texture and colour information, computed on visible and near-infrared channels, late fu-
sion is the best performing strategy and outperforms the state-of-the-art categorisation
methods on RGB-only data.

1 Introduction
Traditional photo cameras record radiation in a range that matches the spectrum of light
visible to the human eye. Yet, the silicon sensor captures radiation in a larger range, in
particular in the near-infrared (NIR). NIR radiation is artificially suppressed using a built-in
filter, called hot mirror, to avoid possible artifacts produced by non-visible radiation. In gen-
eral, computer vision algorithms process only images produced in that way. Would methods
perform better if they had access to a larger spectrum of radiation than what provided by con-
ventional camera? Recent studies [2, 16] have positively answered this question for some
standard computer vision tasks. They have efficiently combined NIR and colour cues and it
was shown that NIR radiation complements the visible light in such tasks.

In this paper, we similarly look at the NIR information captured jointly with visible infor-
mation by standard digital cameras and further analyse the role of this channel in the image
categorisation problem. Our paper contributes an extensive study on how this additional in-
formation can be efficiently integrated. Experiments are conducted on a recently released [2]
Colour+NIR semantic categorisation dataset. When relevant, some of our observations are
also confirmed on two additional visible-only datasets.

In our study, we apply a well-performing and generic categorisation method that works
as follows. Texture or colour local descriptors are encoded using Fisher Vectors [14] to
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produce image signatures that are then fed into discriminative classifiers. We show evidence
that the categorisation method we use is highly competitive, for both Colour+NIR images
and standard datasets, making it a suitable framework for our study.

Our contributions are three-folds. First, consistent with previous work, we confirm the
observation that the combination of both colour and NIR cues can be useful for image cate-
gorisation tasks on a state-of-the art pipeline. Second, we propose a thorough study on how
to compute and best use texture and colour descriptors when NIR information is available.
Third, we investigate the complementarity between the different considered descriptors and
propose efficient ways to combine them.

NIR radiation has been used in many different fields, such as astrophysics and medical
imaging, often requiring some specific equipments. Infrared (IR) has also been considered
more recently in the context of some classical computer vision problems. Li et al. [10]
have used a LBP operation on NIR images combined with a classifier for face detection.
Zhang et al. [21] have enhanced pedestrian tracking using IR. Unlike our work, the latter
study considers radiation in the far-infrared band. In computational photography, Schaul et
al. [17] have used NIR information for haze removal. Salamati et al. [16] have used colour
and NIR cues for material classification. Closer to our work, Brown and Süsstrunk [2] have
proposed a new local descriptor fusing visible and NIR information for scene categorisation.

Scene recognition is a core task of computer vision. Various methods have been pro-
posed [5, 9, 12, 19, 20] using different types of descriptors. The recent study of Xiao et
al. [20] shows evidence in favour of patch based local descriptors for colour images, which
was also shown by Brown and Süsstrunk [2] in the context of Colour+NIR images.

The paper is organised as follows. Section 2 presents the datasets, and describes the
nature and specificity of our data. The categorisation method is described in section 3, and in
particular we elaborate on the local descriptors used in our experiments. Section 4 describes
the conducted study. Finally, we draw conclusions in section 5.

2 Datasets

Our experimental study is applied on a recently released dataset [2], where images are com-
posed of visible and infrared channels.

Some of our observations could transpose to standard colour images, in this case, we
show additional evidence on two other datasets, composed only of traditional visible (RGB)
images. The first one is also a scene dataset (MIT-Scene 8), while the other one is a standard
object classification dataset (PASCAL VOC 2007).

Near Infrared Dataset. Our experiments on combined visible and NIR information use
the EPFL scene classification dataset (EPFL) [2] that consists of 477 images, divided
into 9 scene categories (country, field, forest, mountain, old building, street, urban, water).
Although the number of images in this dataset is limited, it contains challenging classes.
There is some overlap between object categories. For example the classes in Figure 1(d) and
1(e) can be confused with each other, or Figure 1(c) can be confused with the class "water".
Also, this is the only available benchmark dataset for categorisation that contains both RGB
and NIR channels for each image.

As described in [2], the dataset was acquired as follows. To capture the NIR channel,
the NIR blocking filter in the digital camera was removed. As such modified cameras do not
allow for a joint acquisition, two separate exposures were captured, a visible only (with NIR
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(a) water (b) field (c) country

(d) old-building (e) urban

Figure 1: Some images of the EPFL dataset are displayed as pairs. On the left: the conven-
tional RGB image of the scene, on the right: its NIR counterpart.

blocking filter) and a NIR one (without NIR filter but with a filter that suppresses visible
light). The possible movements between the two shots are corrected using an alignment
algorithm. At the end, images composed of 4 channels are produced. More details on the
transformation between NIR sensor responses and a single NIR channel can be found in [6].
Examples of the RGB and NIR channels on some images are displayed as pairs in Figure 1.
On the left, a conventional RGB image of a natural scene is shown, while the right side shows
the NIR representation of the same scene. Note that NIR images have similar appearances,
although there are some differences. Vegetation is bright and both sky and water are dark in
the NIR channel of a scene.

For evaluation, we followed the same protocol as [2]: we randomly selected 11 images
per class for testing (99 total) and trained the classifier using the remaining images. We re-
peated this process 10 times, and we report mean and standard deviation of the classification
accuracy.

Visible Benchmark Datasets. We also consider the following two categorisation datasets.
The MIT scene-8 classification dataset (MIT) [13] is composed of similar scene cat-

egories as the EPFL dataset. It contains 2688 images of 8 outdoor scene categories: coast,
mountain, forest, open country, street, inside city, tall buildings and highways. Follow-
ing [13], we randomly select 100 images per class for training, while the remaining images
are used for testing. We repeat this process 5 times, and report mean and standard deviation
of the average accuracy.

We also test our observations on the popular PASCAL VOC Challenge 2007 dataset
(PASCAL) [4] to show that similar conclusions can be deduced for object categorisation. It
contains 9963 images in total and 20 object classes. In our experiments, we use the provided
split into a training set and a testing set, and we compute mean average precision (MAP)
over the classes. This allows us to fairly compare our results with the state-of-the art.

3 Categorisation Method
For our study, we use the Fisher Vector (FV) as an image representation. The FV [14] is an
extension of the popular Bag-of-Features (BOF) representation [3], which considers higher
order statistics instead of describing images as histograms of visual word occurrences [8, 14].
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The principle is the following. First, a set of low level features is extracted from each im-
age. Patches are extracted according to a regular grid (dense detector) and a local descriptor
is computed for each patch. We apply a principle component analysis (PCA) projection to
the descriptors. Projected descriptors are used to build a visual codebook, which describes
the descriptor space as a Gaussian mixture model (GMM), with N Gaussians. The GMM
distribution can be written as:

uλ (x) =
N

∑
i=1

wiN (x|µi,Σi). (1)

This visual codebook is used to transform each image into a global signature (FV). To com-
pute the FV for one image, we consider its set of low level features X = {xt , t = 1 . . .T}. The
FV GX

λ characterises the sample X by its deviation from the distribution uλ (with parameters
λ = {µi,Σi, i = 1..N}):

GX
λ = Lλ GX

λ , (2)

where GX
λ is the gradient of the log-likelihood with respect to λ :

GX
λ =

1
T

∇λ loguλ (X). (3)

Lλ is the Cholesky decomposition of the inverse of the Fisher information matrix Fλ of uλ ,
i.e. F−1

λ = L′λ Lλ , where by definition:

Fλ = Ex∼uλ

[
∇λ loguλ (x)∇λ loguλ (x)′

]
. (4)

More details on the FV computation and its theoretical foundations can be found in [8, 14].
As suggested in [15], we further apply square-root and L2-normalisation to the FV based
image signature.

We varied the number of Gaussians in the visual codebook, from 64 to 2048 and observed
very little difference between classification scores, for both SIFT and colour descriptors. We
set 128 Gaussians for all our experiments on NIR. Similarly, for the PASCAL VOC dataset
we varied this number and obtained no more improvement with more than 256 Gaussians.
Consequently we used that number for the two visible datasets.

During training, the signatures from all training images are used to train a classifier. This
classifier is then applied to each testing image signature. We use linear SVMs with a hinge
loss as classifier and stochastic Gradient Descent (SGD) algorithm [1] to optimise it in the
primal formulation.

Image channels and feature vectors. We use two types of features. First, we consider the
popular SIFT [11] descriptor. We use the classical 4-by-4 bins decomposition of the patch,
with 8 orientation histograms computed for each bin. The concatenation of these histograms
leads to a 128 dimensional descriptor.

The second type of features looks directly at the intensity values in each image chan-
nel [15]. For a given channel, we consider a 4-by-4 bin decomposition of the patch, and each
bin is described by the mean and standard deviation of the intensity of pixels in that bin.
For a given channel, a 32 dimensional vector is produced. The final feature is obtained by
concatenation of the vectors of all relevant channels. We refer to this feature as COL.

For visible-only datasets, images are described by 3 colour channels: r, g and b. For the
NIR dataset, the original images contain 4 different channels, r, g, and b for the visible part,
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r g b n p1 p2 p3 p4 l
SIFT SIFTr SIFTg SIFTb SIFTn SIFTp1 SIFTp2 SIFTp3 SIFTp4 SIFTl
COL COLr COLg COLb COLn COLp1 COLp2 COLp3 COLp4 -

Table 1: Summary of basic features considered for combination.

and a near-infrared (NIR) channel denoted by n. We additionally consider the luminance
channel denoted by l, which can be computed on the visible part (r,g,b).

As in [2], we consider an alternative way of dividing images into channels. The initial
4D (r,g,b,n) vector is decorrelated and a PCA projection is computed. Afterwards, each
pixel can be described in this new 4 dimensional space, as p1, p2, p3, p4. This new colour
space can replace the conventional channels. This projection takes place so that the first
component, i.e. p1, explains the maximum amount of variance of the data. In other words,
the first component captures the largest amount of information in the decomposition. [2]
showed that it is composed of a positive and almost equal contribution of all 4 channels.

The SIFT and COL descriptors can be applied and combined in different ways on these
channels, hence we obtain a large set of possible features for building the image signatures.
Table 1 summarises the basic features we consider for further combinations. We use the
following notations. SIFTi, j,k denotes the concatenation of the SIFTi, SIFTj, and SIFTk
features, computed on the channels i, j, and k, respectively. Similarly, COLi, j,k concatenates
the COLi, COL j, and COLk descriptors into a 96 dimensional descriptor. For 2 and 4 channels
(such as SIFTl,n and COLr,g,b,n) similar rules are applied.

4 Experimental Study

In this section we describe the conducted experiments. First, we show the positive influence
of the PCA applied to both local descriptors. Then, we analyse the behaviour of the SIFT and
colour descriptors independently. Finally, in order to determine the best strategy, different
combinations of these descriptors are discussed.

4.1 The Influence of PCA on Local Features

In the previously described pipeline, a PCA projection is usually applied to reduce the di-
mensionality of the local descriptors. Here, we study the influence of this step and compare
three configurations: i) no PCA is applied and the original descriptors are directly used
to build the codebook, ii) PCA is used in order to reduce the dimensionality to D=64 (as
in [15]), and iii) PCA is applied and descriptors are projected into the PC space, however,
the full dimensionality is kept. For the latter case, referred to as Full PCA, the projected
feature vectors have the same dimensionality as the original descriptors. The results of these
three options are compared for “visible-only” descriptors (i.e. SIFTl and COLr,g,b that use
only RGB channels). Results are reported in the first three sub-tables of Table 2, for the three
datasets, namely, PASCAL, MIT, and EPFL. To study the PCA effect when the NIR channel
is available, we also report the results on SIFTp1,p2,p3,p4, used in [2], and COLr,g,b,n, as a
direct extension of COLr,g,b (see the last sub-table of Table 2 for the results).

First, we confirm that this PCA step has a crucial role and is needed in the pipeline
(Table 2). If we compare Full PCA to the original descriptors, for visible only features, this
difference is of a few percent for SIFTl (7.8% for PASCAL, 2.2% for MIT, and 4.3% for
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Descriptor SIFTl COLr,g,b

PASCAL
Orig. desc. 51.6 37.6

PCA with 64D 59.4 48.2
Full PCA 59.4 48.2

MIT
Orig. desc. 90.1 ± (0.6) 75.8 ±(1.1)

PCA with 64D 92.1 ±(0.2) 86.9 ±(0.3)
Full PCA 92.2 ±(0.2) 86.9 ± (0.4)

EPFL
Orig. desc. 79.1 ± (4.7) 71.6 ± (2.6)

PCA with 64D 83.4 ± (2.6) 80.2 ± (4.1)
Full PCA 83.4 ± (2.8) 81.7 ± (2.8)
Descriptor SIFTp1,p2,p3,p4 COLr,g,b,n

EPFL
Orig. desc. 83.8 ± (3.4) 71.1 ± (3.9)

PCA with 64D 85.1 ± (3.4) 81.7 ± (1.8)
Full PCA 85.9 ± (4.0) 82.2 ± (1.6)

Table 2: Mean average precision (MAP) for
PASCAL, and class accuracy (mean ± std) for
different PCA configurations for MIT and EPFL.
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Figure 2: EPFL dataset: varying PCA
dimensions for SIFTi and COLr,g,b,n

EPFL). For COLr,g,b differences are larger at about 10%. Similar results are achieved when
the NIR channel is available (few percent for SIFTp1,p2,p3,p4 and 11.1% for COLr,g,b,n).

We now look at PCA as a dimensionality reduction method. Table 2 reports results
for a reduction to 64 dimensions. Also, we compare the final accuracy for a full range of
dimensions in PCA projection, for both RGB+NIR descriptors (Figure 2). Results show
that in most of the cases, by increasing the PCA dimensions no accuracy loss is observed,
although it makes computations more expensive. It is interesting to note that no over-fitting is
observed. Therefore, in the rest of the paper we choose to use the full resolution descriptors
on the PCA space. Nevertheless, the stability observed over the set of dimensions indicates
that PCA can also be used to reduce the feature dimension and fasten the computations for
larger scale experiments.

4.2 Local Descriptors Study
We begin our study by looking at individual descriptors. As mentioned earlier, we considered
two complementary features. The SIFT descriptor encodes gradient orientation, and conse-
quently captures both the image contour, and the texture contained in a patch (Section 4.2.1).
As colour information is also characteristic for scenes, and as an additional channel (NIR)
is available, we look at the influence of the simple colour descriptor we described (Sec-
tion 4.2.2). We will show evidence of their complementarity in Section 4.3.

4.2.1 SIFT Features

In this section, we investigate different ways of computing SIFT descriptors on RGB+NIR
images. The standard SIFT feature is SIFTl , which considers the visible-only luminance
channel. We consider SIFTn, as the NIR channel is also a mixture of red, green, and blue
sensor responses, but in the invisible domain. We also consider SIFTp1 as, by construction,
the channel p1 incorporates a large amount of information from r,g,b and n. Finally, we
combine the first two descriptors, SIFTi and SIFTn by concatenating them, as they contain
non-overlapping information. Classification accuracies are shown in Table 3.

First, we observe that all these descriptors perform quite similarly. As expected, SIFTp1
has a rather similar performance with SIFTl , as it is achromatic and contains a positive
and almost equal contribution of all 4 original channels. More surprising, SIFTn performs



SALAMATI, LARLUS, CSURKA: COMBINING VIS & NIR FOR IMAGE CATEGORISATION 7

Descriptor SIFTl SIFTl,n SIFTn SIFTp1 SIFTp1,p2,p3,p4 SIFTr,g,b,n
EPFL Accuracy 83.4 ± (2.6) 84.3 ± (3.3) 83.7 ± (2.4) 83.0 ± (2.3) 85.9 ± (4.0) 82.7 ± (3.1)

Table 3: Accuracy (mean ± std) on EPFL for SIFT features extracted on different channels.

Descriptor COLr,g,b COLr,g,b,n COLp1,p2,p3,p4 COLp1,p2,p3
EPFL Accuracy 81.7 ± (2.8) 82.2 ± (1.6) 83.0 ± (2.2) 83.2 ± (2.4)

Table 4: Accuracy (mean± std) on EPFL, colour features on different channel combinations.

comparably, while SIFT computed on any single visible colour channel performs worse (e.g.
SIFTg gets 82.0%± (2.8)). Nevertheless the loss is not too important, showing that some
texture information can be kept in any of these channels. This is further confirmed, on the 2
other datasets (For MIT for instance, SIFTl is 92.2± (0.2), while SIFTr gives 91.9± (0.3))

Then, considering SIFTl,n the concatenation of SIFTl and SIFTn gives an accuracy of
84.3%, showing a small improvement over both individual results and confirming that they
indeed contain complementary information.

Instead of using a dedicated colour descriptor, as we will do in the next section, the
colour information can be included in SIFT, by concatenating SIFT descriptors per channel
over the full 4D space. Results for SIFTr,g,b,n and SIFTp1,p2,p3,p4 are also reported in Table 3.
SIFTr,g,b,n performs equally, and not better than luminance SIFT, although it uses additional
NIR information. For the two visible datasets, SIFTr,g,b’s accuracy even drops compared
to SIFTl (MAP=54.1% on PASCAL and ACC= 86.9% on MIT). SIFTp1,p2,p3,p4, the multi-
spectral SIFT descriptor proposed by [2], stands out with 85.9% accuracy. By using a more
adapted colour space, it makes better use of both the texture and the colour information.

We could have compared these with other versions of the colour SIFT descriptor, as
proposed by [18], but [2] showed that the SIFTp1,p2,p3,p4 performs better than those features.

4.2.2 Colour Features

Another feature relevant to classification is colour, which looks at the relation between r, g, b,
and n channel values. In this part, we compare 4 different colour descriptors. COLr,g,b is the
standard one and considers only visible information. Its direct extension to the NIR domain
is COLr,g,b,n. We also consider RGB+NIR information in the alternative colour PCA space,
COLp1,p2,p3,p4. Finally, as the last channel of this descriptor contains less information and
a significant amount of noise, we also look at the COLp1,p2,p3 descriptor. Table 4 compares
the classification accuracy of the aforementioned descriptors.

The first observation is the good performances obtained by these colour descriptors,
which encode only simple statistics. For EPFL, COLr,g,b,n is for instance only 1.5% below
SIFTn. Altough not comparable with SIFT, we observed the fair performance, considering
the simplicity of this descriptor, of COLr,g,b on visible datasets too (48.2% on PASCAL and
86.9% on MIT).

Table 4 also confirms that incorporating NIR information increases the classification
accuracy. The visible baseline COLr,g,b is slightly below COLr,g,b,n, and is clearly outper-
formed by COLp1,p2,p3,p4. This shows that the PCA projection in the colour space, which
de-correlates the channels r, g, b, and n, further improves the results of the COL descriptor.

Finally, we can also observe that removing p4, which contains the least amount of infor-
mation, does not change the classification accuracy, while slightly reducing the cost (smaller
feature dimension).
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Classifier Descriptor1 Descriptor2 Fusion type Accuracy

FV + SVM, with NIR

COLr,g,b

SIFTl,n
EF 84.3 ± (1.7)
LF 87.4 ± (2.7)

SIFTn
EF 84.1 ± (2.6)
LF 86.2 ± (2.0)

COLr,g,b,n

SIFTl,n
EF 84.4 ± (2.8)
LF 85.5 ± (2.1)

SIFTn
EF 84.1 ± (2.9)
LF 86.5 ± (2.4)

COLp1,p2,p3

SIFTl,n
EF 83.3 ± (3.4)
LF 86.7 ± (2.7)

SIFTn
EF 82.9 ± (2.7)
LF 87.5 ± (2.4)

COLp1,p2,p3,p4

SIFTl,n
EF 85.8 ± (2.6)
LF 86.5 ± (2.8)

SIFTn
EF 83.2 ± (3.0)
LF 87.9 ± (2.2)

FV + SVM, no NIR COLr,g,b SIFTl LF 84.5 ± (2.3)
Brown and Süsstrunk [2] – – – 72.0 ± (2.9)

Table 5: Accuracy (mean ± std) for different fusions on the EPFL dataset

4.3 Fusion of SIFT and colour information

Now that we have studied SIFT and colour descriptors independently, we are interested in
strategies that combine texture and colour information. We already considered the SIFTr,g,b,n
and the more successful SIFTp1,p2,p3,p4, which encode both of them using the SIFT descrip-
tors on multiple channels. In the following, we show that we can go beyond the accuracies
obtained by these features by combining the previously studied SIFT and COL features.

We consider two types of combination. Early fusion is done at the descriptor level i.e.
we concatenate both extracted features for each patch, and then apply a full PCA projection
on the concatenated descriptors. Late fusion combines the features at the latest stage by
averaging the classifier outputs obtained for both descriptors. In this study we apply, late
fusion with equal weights. We skipped the optimisation of these weights on a validation set
considering the already small size of our training set1.

For SIFT, we kept SIFTl,n and SIFTn descriptors as they obtain best performances in
the first part of our study. For the colour feature, we decided to test all features considered
in 4.2.2 to see how complementary they are compared to the above mentioned two SIFT
features. Table 5 shows the performance of early fusion (EF) and late fusion (LF) strategies
on all 8 possible SIFT/COL pairs. We can draw several observations from this table.

First, it is clear that late fusion always outperforms early fusion, when SIFT and colour
are combined. The difference is often significant (3% in average). Similar results are also
observed for the two visible-only datasets. For the MIT and PASCAL datasets, early fusion
of SIFTl and COLr,g,b gets 90.7% (± 0.4) and 54.9% while late fusion obtains 92.4% (±
0.6) and 61%, respectively. This could be explained by the very different nature of the
combined descriptors. In that case, building specific classifiers for each descriptor, and doing
a combination at the decision level is better suited.

Second, we can see that all the considered LF combinations, for which at least one de-
scriptor contains NIR cues, outperform the “visible-only” baseline, i.e. the results obtained
by the late fusion of SIFTl with COLr,g,b. The most dramatic gain is observed for the classes
country and mountain (from 68% to 75% for country and 86% to 97% for mountain). This
again underlines the usefulness of the NIR information for the categorisation task.

1We did not study more complex combinations, simple strategies were shown to yield competitive results [7].
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Finally, we observe the benefit obtained by the proposed strategy: the fusion of indepen-
dently trained SIFT and colour descriptor-based signatures resulted in 87.9% accuracy, and
outperforms the multi-spectral SIFT (SIFTp1,p2,p3,p4) with only 85.9%. The best results are
obtained with SIFTn +COLp1,p2,p3,p4, but SIFTn +COLp1,p2,p3 and SIFTl,n +COLr,g,b lead
to very similar performances. For visible only datasets, the same observation holds. While
for PASCAL (resp. MIT), SIFTr,g,b obtained 54.1% (resp. 86.9%), the late fusion of SIFTl
and COLr,g,b gets 61.0% (resp. 92.4%). This shows that for both standard and RGB+NIR
datasets, colour can better improve SIFT based classifiers when used as a specific descriptor
on its own and combined with SIFT at a late fusion stage.

Comparison with previous work. To improve our results, since the geometry is expected
to be consistent across scene categories, we have combined the FV representation with the
spatial pyramid (SP) [9], as suggested in [15]. For the visible datasets, we applied SP on
SIFTl and COLr,g,b independently and combined them with late fusion. Results2 were indeed
further improved on MIT, from 92.4% to 93.6% and on PASCAL, from 61.0% to 63.7%.

However, when we applied SP on EPFL, on COLp1,p2,p3 and SIFTn, their late fusion
gave 87.5% that is similar to its non-SP counterpart (87.5%). The absence of improvement
can be justified by the limited size of our training set.

All reported results significantly outperform the 72% (± 2.9) on the EPFL dataset re-
ported in [2]. This big difference is justified by the two different categorisation methods.
While [2] uses a nearest neighbour based classifier directly at the local descriptor level, we
train a linear SVM classifier on FV representations that aggregate local descriptors. Using
the same local descriptor as [2], i.e. SIFTp1,p2,p3,p4 reduced to 128D, leads already to a much
higher accuracy (85.1 (± 3.4)). Nevertheless, our experiments confirm that their idea of de-
correlating the four colour channels allows to improve the categorisation accuracy. Based on
this colour space, our best strategy obtains a final accuracy of 87.9%.

For the MIT and PASCAL datasets, we obtain similar or better results than state-of-the
art. On the MIT dataset, Oliva et al. [13] report a classification accuracy of 83.7% with
GIST features. Our best result 92.4% was obtained with SIFTl +COLr,g,b (LF) and SP. On
the PASCAL dataset we obtain 63.7%, which is comparable to the 64.0% of [22].

5 Conclusion
In this paper, we have presented a thorough study of scene categorisation in the case where
NIR information that can be captured with a normal digital camera is available in addition to
visible light. This study is based on the FV representation, a generic and powerful categori-
sation framework. As a conclusion specific to that method, we have shown the usefulness of
applying a PCA projection to local descriptors.

Through the study of two generic local descriptors, we have obtained NIR specific con-
clusions. First, we showed that NIR is useful information that combined with visible cues can
improve recognition. In particular, the SIFT descriptor in the NIR domain performed similar
to the standard luminance-based SIFT. The two latter are outperformed by the concatenation
of SIFT descriptors computed on each channel of an alternative well-designed colour space
(p1, p2, p3, p4) obtained through de-correlation of the colour channels, and NIR.

Second, we also investigated the best way how to include the 4D colour information in
our categorisation method. Instead of encoding colour through a multi-channel SIFT, we

2As SP increases the image signature dimensionality, we reduced the features to 64D for these last experiments.
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proposed to use a dedicated colour descriptor, that encodes local statistics in each channel.
This simple descriptor performed almost as well as SIFT features, in particular in the alter-
native PCA colour space instead of the conventional r, g, b, and n space. The late fusion
of FV signatures computed on this best colour descriptor (COLp1,p2,p3,p4) and on the NIR
SIFT descriptor (SIFTn) was shown to be the best categorisation strategy and outperforms
multi-channel SIFT descriptors.

This observation generalised to visible datasets, showing that colour information is bet-
ter used when considering colour in a specific descriptor. A classifier trained on colour-
descriptor based signatures, combined as late fusion with a complementary SIFT based clas-
sifier, outperforms the multi-channel SIFT descriptor (SIFTr,g,b).
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