
Toward Robust Material Recognition for Everyday Objects

Diane Hu
http://cseweb.ucsd.edu/~dhu/

University of California, San Diego
San Diego, CA, USA

Liefeng Bo
http://www.cs.washington.edu/homes/lfb/

University of Washington
Seattle, WA, USA

Xiaofeng Ren
http://www.cs.washington.edu/homes/xren/

Pervasive Computing Center, Intel Labs
Seattle, WA, USA

Figure 1: We study material recognition in real-world images. We take
a discriminative approach by utilizing a rich set of material-motivated
features based on kernel descriptors [1], dimension-reduced with large
margin distance learning. We show extensive evaluations on the Flickr
dataset [2] as well as new datasets using ImageNet and macro photos.

Everyday Material Recognition. Material recognition is a challeng-
ing problem and is fundamental to visual perception. Recent research
pushes material recognition from lab settings (such as CuRET) into the
real-world. The MIT dataset [2] selects Flickr photos as samples for com-
mon materials, demonstrating the difficulties of material recognition. We
study material recognition for everyday objects utilizing a rich set of local
features under a single framework of Kernel Descriptors [1]. We evalu-
ate both standard features (shape and color) as well as material-motivated
features (variances of gradient orientation and magnitude). We use large-
margin distance learning [5] to reduce descriptor dimensions by a factor
of 30. We provide insights into questions such as “how hard is real-world
material recognition?”, “what are the best features for material?”, and
“how does material recognition relate to object recognition?”.

Kernel Descriptors and Extensions. Kernel descriptors [1] are a fam-
ily of patch-level features that are recently introduced for visual recogni-
tion. The basic idea of kernel descriptors is that the similarity between
patches can be formulated as a match kernel, and highly non-linear match
kernels can be well approximated through kernel PCA, leading to kernel
descriptors over local image patches. More specifically, the shape kernel
descriptor from [1] is based on the local binary pattern:

Ks(P,Q) = ∑
z∈P

∑
z′∈Q

s̃zs̃z′kb(bz,bz′)kp(z,z′)

where P and Q are two patches, z denotes the 2D position of a pixel in the
patch , s̃z is the standard deviation of pixel values (3× 3 local window),
and bz is the local binary pattern [4] around z. kb(bz,bz′) = exp(−γb‖bz−
bz′‖2) and kp = exp(−γp‖z− z′‖2) are gaussian kernels.

Motivated by material characteristics, we introduce two new kernel
descriptors using variances of gradient orientation and magnitude. Let
σo

z , σo
z′ be the standard deviation of gradient orientation around z and z′,

and σm
z and σm

z′ the standard deviations of gradient magnitude. We define

KGO(·, ·) = ∑
z

∑
z′

s̃zs̃z′kgo(σ
o
z ,σ

o
z′)kb(bz,bz′)kp(z,z′)

KGM(·, ·) = ∑
z

∑
z′

s̃zs̃z′kgm(σ
m
z ,σm

z′ )kb(bz,bz)kp(z,z′)

where kgo and kgm are Gaussian kernels that measure the similarity of the
variance of gradient orientation and gradient magnitude, respectively.

Material Recognition Results on Flickr. We evaluate the five kernel de-
scriptors on the Flickr dataset (Figure 2). The two new kernel descriptors,
capturing local variations, work surprisingly well on material recognition.
Combining descriptors, We improve the state of the art from from 45% to
54%, a large step toward robust material recognition for everyday objects.
For comparison, we also show object recognition results on Caltech 101.
The results are largely similar, with interesting differences such as the
relative performance of shape vs gradient (texture) descriptors.
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Figure 2: Results on MIT/Flickr [2]. (a) Material recognition accuracies
of five kernel descriptors with LMNN=10; with object recognition accura-
cies on Caltech 101 from [1]. (b) Accuracy vs dimension in large margin
nearest neighbor for the shape descriptor, compared to kPCA.

Material vs Object Recognition. To further understand real-world ma-
terial recognition and its connections to object recognition, we collect
two new datasets, one using ImageNet and the other using macro photos.
For the ImageNet-Material7 dataset, we choose 7 common material cat-
egories and, for each material, choose 10 object categories that are com-
monly associated with that material. The dataset includes 100 images for
each object category, 1000 total for each material category, i.e. 10 times
the size of the Flickr dataset. For the macro-lowres dataset, we use 30
physical objects commonly found in everyday life and take two types of
images: one type is low-res, low-quality, and taken with a cheap webcam
at VGA resolution. The other type is DSLR photos (24M pixels) with a
high quality macro lens that provides 1:1 magnification.

In the paper, we show many experimental results on exploring the re-
lations between material and object recognition, such as: (1) evaluating
the same set of descriptors on both tasks; (2) comparing material recog-
nition accuracies when the system is trained on same or different objects;
(3) feeding object predictions into material recognition and vice versa; (4)
comparing recognition accuracies using macro vs lowres images.

(a) (b)
Figure 3: (a) Examples from the ImageNet-Material7 dataset with joint
material and object labels, from the fabric and plastic material categories.
(b) An example from the macro-lowres dataset. Shown is a macro photo
and a lowres webcam photo of a physical object (towel).
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