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In this paper we consider the problem of estimating a 3D motion field
using multiple cameras. In particular, we focus on the situation where
a depth camera and one or more color cameras are available, a common
situation with recent composite sensors such as the Kinect. In this case,
geometric information from depth maps can be combined with intensity
variations in color images in order to estimate smooth and dense 3D mo-
tion fields. We propose a unified framework for this purpose, that can
handle both arbitrary large motions and sub-pixel displacements. The es-
timation is cast as a linear optimization problem that can be solved very
efficiently. The novelty with respect to existing scene flow approaches is
that it takes advantage of the geometric information provided by the depth
camera to define a surface domain over which photometric constraints can
be consistently integrated in 3D. Experiments on real and synthetic data
provide both qualitative and quantitative results that demonstrate the in-
terest of the approach.
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Figure 1: (a) Projection of two consecutive surfaces onto the cameras, and
(b) color and depth images.

Problem Formulation In order to estimate the 3D flow, we cast
the problem as an minimization where data terms corresponding to pho-
tometric consistency constraints are combined with a regularization term
that favors smooth motion fields:

E = Edata +Esmooth. (1)

Data terms enforce visual coherence of the computed displacement field
while the regularization term imposes a deformation model with local
rigidity constraints.

Visual Constraints As suggested by Xu et al. in their work on
optical flow [3], we use two different kinds of photometric cues to deal
with both large and small displacements. First we match sparse visual
features (SIFT) between two consecutive color images. This information
is not sensitive to the amplitude of the motion in the scene. For small
details we use the well known normal flow information available at every
pixels but only valid for small motion. Both cues contribute a term to
Edata in equation 1.

Geometric Constraints The regularization stage is important for
two reasons. First we need to propagate the sparse cues given by the
visual features, and second the aperture problem, well known in opti-
cal flow estimation, extends from 2D to 3D. Hence the data term in our
formulation is not sufficient to compute the scene flow. Unlike existing
work [2], we choose to perform this regularization using 3D information
given by the depth camera, instead of computing optical flow in the image
domain and do a projection of this 2D flow on the depth maps. We ex-
tended Horn & Schunck’s method [1] to 3D. This regularization enforces
a global smoothness of the motion field in 3D. Therefore we do not suffer
from 2D regularization-specific drawbacks, such as object boundaries and
depth discontinuities oversmoothing. This geometric constraint yields the
smoothing term in equation 1.

Formulation & Resolution We gather all the visual and geometric
constraints into one single linear system of the following form :[
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where L is the Laplacian matrix of the mesh associated to the depth map,
V is a vector compounding the motion of all the scene points, and A and
b stack all the motion constraints coming from data terms. The paper ex-
plains in details the construction of these matrices along with a discussion
about Laplacian weights. This linear system is very sparse.

In practice, we propose a two-step algorithm. The first one handles
large displacements, and the second recovers small motion details. This
is done by adjusting the weight associated to each constraint and perform
two consecutive resolutions of equation 2.

Results We tested our approach on both synthetic and real data.
Figure 2 shows some results on real data. We used different setups with
either one or two color cameras. We also tested two different depth cam-
era types, a time-of-flight camera and a Kinect camera. Synthetic data
allowed us to perform a numerical comparison between our method and
the one proposed in [2]. The paper contains more details about setups and
gives both quantitative and qualitative results.

Figure 2: Two examples. Input data: the colour image (left) and the
meshed surface (middle). Results: the 3D displacement field (right), color
denotes 3D displacement norm.

Contribution (i) Following works on robust optical flow estima-
tion [3], we take advantage of robust initial displacement values as pro-
vided by image features tracked over consecutive time instants. (ii) A
linear framework that combines visual constraints with surface deforma-
tion constraints and allows for iterative resolution (variational approach)
as well as coarse-to-fine refinement.
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