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Abstract

We address the problem of multitarget region tracking within image sequences. Fol-
lowing recent work on joint segmentation and tracking as well as non-parametric mod-
eling of color statistics, we develop an energy-minimization based approach using color
histograms. As in a few other existing approaches, a single color probability distri-
bution per object and background is handled. In this context, global histograms may
be problematic for tracking in real scenes with cluttered backgrounds, where statistical
color data is highly scattered, preventing the estimation of reliable color statistics for
object/background discrimination. To overcome this limitation, we introduce a short-
sight perception modeling of background, which concentrates on the vicinity of tracked
objects and thus extract more consistent statistical data for accurate separation between
objects and background. To account for temporal consistency, our energy is also en-
dowed with a novel data term explicitly based on temporal variation of color distribution
within objects and local background regions.

1 Introduction

A large variety of optimization methods have been proposed and applied to joint object
segmentation and tracking in videos. In this context, a partition of each frame into several
objects and background is usually sought as the minimizer of an energy functional, enforcing
consistency of color statistics and shapes of objects over time and space [6, 14]. Most often,
the energy is derived from a Bayesian probabilistic model [1, 9], starting with the maximiza-
tion of the a posteriori probability of current partition given current observation as well as
past partitions and images. As is, the a posteriori probability is an intractable expression in
general, which raises the need to use mathematical transformations based on several simpli-
fying assumptions. The energy derived from such Bayesian framework is generally made up
of a data term resulting from the likelihood of image data given the partition and a prior term
which embodies soft constraints over object shape and/or motion.

In this work, we are specifically concerned with the energy data term. Shape and motion
priors are beyond the scope of this paper, yet they could be added in order to specialize
the method towards particular applications requiring more constrained tracking. We aim
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at tracking objects undergoing simultaneous translation and arbitrary smooth non-rigid de-
formations. We focus on data terms representing color likelihood of pixels with a global
region-based non-parametric model, like in [3]. According to this model, color statistics in a
given region, whether this region corresponds to an object or background, are described with
a single probability density function (PDF) derived from a kernel-based color histogram.
This kind of approach was already addressed for segmentation in single images [7, 10, 13]
or videos [3, 5].

Global kernel-based probability estimation raises an issue for tracking in real scenes, es-
pecially for the background region, which may be cluttered and contain many non-tracked
objects. In such case, statistical color data is highly scattered, so that background distribu-
tion may not be confident. To overcome this problem, limiting the spatial range of the energy
within a narrow domain may be considered. We propose an approach based on a short-sight
modeling of background, in which tracked objects deliberately ignore background color data
spatially far from them. It allows to obtain consistent indicators for separation between
background and object regions. A related principle was recently applied for object segmen-
tation in still images, e.g. [8, 11]. In addition, we propose to model explicitly the temporal
variation of color distribution within regions. To account for temporal consistency, we inte-
grate an energy criterion penalizing the variation of histograms between consecutive frames.
Our method shares common ideas with probabilistic color tracking [15] or with the mean
shift tracker [4], in the extent we seek for regions in which color statistics match references
resulting from previous frames. Energy minimization is performed thanks to the recent vari-
ational region growing approach developed in [16]. The benefits of using simultaneously
short-sight background modeling on one hand and color distribution temporal variation on
the other hand are demonstrated on synthetic and real image sequences.

2 Region tracking as a Bayesian estimation problem

2.1 Bayesian inference

Our model is defined over continuous space and discrete time. We consider the input video
as a sequence of frames I = {I1,...,I7 }. Each frame is a mapping from space domain D C R?
to m-dimensional color domain C (e.g. m = 3 for RGB data). Spatio-temporal segmentation
aims at providing for each frame /; a partition P, of the image domain into n+ 1 regions, i.e.
background Q¥ and n objects {Q/, ..., Q"}. Tracking is done in a sequential fashion, since
next partition £ is determined given current frame /, and partition F;. In this context, we
first rely on the Maximum A Posteriori (MAP) framework introduced by Mansouri [9], who
uses Baye’s theorem and assumes conditional independence between image pixels:

v = argmaxp(Pa |l I, Pr)

P
1
argmax [T p(ls+1 (9|1, Py Prst )p(Brea 11, Pr) M

P11 xeD

Probability p(I;+1(x)|l;, P, Pi+1) is the likelihood of observing a particular color at space-
time location (x,# + 1) given current image and both current and next partitions. This term
will represent our assumptions about color constancy over time, whereas prior probabil-
ity p(P+1|I;,P;) models available prior knowledge about object shape and/or motion. A
tractable expression is obtained by making the reasonable assumption that the likelihood of
observing I, 1(x) depends only on /;, P; and the region which x will belong to at time 7 + 1.
Moreover, regions are assumed to have distinct color likelihoods, conditioned on their re-
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spective current configurations, which leads to:
PULi1 (X) |11, Py Prr) = Pl (X) |11, X € Q) 2

which we shorten to £}, (x) for simplicity, corresponding to the likelihood of color /;, 1 (x)

if x is inside region Q' at time ¢+1. Hence, the optimal partition maximizes the joint likeli-
hood over every pixel from every region'

Py = argmaXH [T 4. ®pPall,P) 3)

Py1 i=0 er;+1

The MAP estimation of partition P, is turned into minimization of energy E|[P;1], taken
as the negative log of posterior probability (3):

E[Py] = —nlogp(f’t+1|1z,1z+1,Pt)
= Z{/ 10g€§+1(x)dx}IOgP(PzHUnPt) @
i=0 Q4

2.2 Estimation of probability functions

The choice of likelihood functions depends on the assumptions made about temporal con-
sistency of color, whereas prior probability depends on constraints on shape and motion of
the tracked objects. For likelihood functions, we rely on non-parametric kernel estimation of
color Probability Density Functions (PDFs). The estimation is global, in the extent that a sin-
gle distribution is used to describe color statistics in an entire region. In image segmentation,
this principle leads for instance to the maximization of histogram entropy [7] or discrepancy
between region histograms [10]. More sophisticated color models could be used, however
we currently focus on demonstrating the benefits of our approach with a simple color model.
Let /i be the kernel-based color histogram of region Q' at time ¢. For a given color &, we
have:

@)= [ Kalli(x) - a)ix
Joi
where K is an m-dimensional isotropic Gaussian kernel with zero mean and standard devi-
ation o. While normalizing histograms by region areas in order to obtain PDFs, likelihood
functions are formulated so that pixels at time ¢ + 1 will tend to be included into the best
matching region, regarding statistics at time ¢:

hﬁUtﬂ("))
[o4

1 (%) ~ [Kc (I1(y) = Ir41(x))dy
/ i

Estimating color PDFs in this way may be Vlewed as computing "smoothed" normalized
color histograms within regions at time ¢ and assigning color likelihood of a tested pixel x
at time 7 + 1 to the value of the corresponding bin in these histograms. To some extent,
this approach is a "time-consistent” counterpart of the histogram-based segmentation model
of [7]. As regards prior probability, with a generic view, we consider a simple non-temporal
smoothness prior. No prior knowledge regarding shape or motion is available. It is thus
relevant to consider the length of object boundaries as a regularizer, weighted by user-defined
parameter @ controlling its significance:

—logp(Py1|l1. Py) wZ‘,!&QtH
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3 Short-sight perception of background

We address one of the shortcomings inherent to tracking approaches based on global kernel-
based estimation of color PDFs. The matter here is the lack of confidence of color statistics
which might appear in cluttered backgrounds, due to the presence of various objects and
static parts with different appearances. To illustrate the undesirable effect it may have on seg-
mentation, consider the curve evolution problem related to the minimization of energy (4).
Suppose that a portion of the boundary between background and object Q' is described by
curve I" parameterized by arc-length s. Calculus of variations with respect to I" gives the fol-
lowing gradient flow (see for instance the mathematical framework of the region competition
approach [17]):

T (s)

ot

where time index #+1 is dropped for simplicity, 7 is the algorithmic time and n is the unit nor-
mal vector pointing towards region Q/. Regardless of curve implementation, which may rely
either on parametric contours or level-sets, the curve will locally expand if color I, (T'(s))
matches Qs statistical features more than the background’s ones, and shrink in the opposite
case. Estimating these statistical features over entire regions can be a drawback for tracking
in real scenes, especially for the background region distribution, which may be cluttered and
contain many non-tracked objects. In such case, statistical color data is highly scattered,
so that background color likelihood /° may not be confident. If /° gets small for nearly all
colors, regions are more likely to include background pixels and leak outside actual objects.
One may consider ignoring background information in the tracking process, removing term
over region QO from energy (4). This would imply to specify a threshold over the log-
likelihood of pixels, below which pixels would be rejected from the target region. However,
such threshold might be sensitive and thus prevent the method to be easily reproducible. To
overcome this limitation and obtain reliable background image data, we head towards a back-
ground model based on "short-sight perception”. To some extent, we adapt the philosophy of
local modeling approaches [2, 8] to the tracking problem. Our approach is also related to the
idea of spatial context brought up in [12]. Instead of considering statistical knowledge in the
same extent for all background pixels, we attach more importance to background pixels as
they are closer to objects, and introduce a relaxed version of the minimization problem (4).
To this purpose, let d(x,Q') be the euclidean distance from any background pixel x to the
nearest pixel in a given object Q':

= [log /°(T'(s)) —log £'(T'(s))m(s) + ...

d(x,Q") = min|[lx—y]|
yeQ!

As we wish to decrease the contribution of background pixels to color statistics and en-
ergy, we introduce a positive real-valued weighting function y, which should be compactly
supported and non-increasing with respect to distance d. Given a chosen support width w,
several types of weighting functions are relevant, such as steps or piecewise smooth func-
tions:

1 ifd<w 2(d){]—d ifd<w

Wi (d){ 0 otherwise 0 v otherwise

Let B be the domain around object Q' where the distance weight is non-zero for every lo-
cation. Hence, B' may be thought of as a band of width w around the object. We consider
that background color statistics are relevant only within bands B’, and thus ignore available
knowledge about color appearance in the "far" background F = Q°\ (J%_, B'. In our multiple
object tracking framework, each object has its own local perception of surrounding back-
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Figure 1: Tracked objects endowed with their own short-sight perceptions of background.
Original image (left), segmented targets with surrounding bands (center) and background
faded to black with respect to its contribution to perceptions (right)

ground and ignores far background. This principle is depicted in fig. 1. In the right part
of the image, background pixels are faded to black proportionally with their distance to the
nearest object boundary. Let k be the histogram over the outer band of a given object. It
is considered as fuzzy in space, in the extent that contributions of pixels are weighted with
respect to their distance to the target object :

(o) = [ Wld(x,0) Ko (1, (x) — o)ax

The derived band likelihood function q relates the color of a band pixel to the normalized
corresponding bin value in the previous band histogram:

1 (0) = K1 (¥) ©
| widv.2)ay

This formulation aims at improving outlining of objects, as discrepancy between background
and object colors is efficient mostly in the outer neighborhood of the object. Favouring close
pixels advantageously prevents the discrepancy from being affected by changes on back-
ground pixel colors as soon as these changes arise far from the object. Moreover, in case of
moving background, spatial fuzziness of the likelihood will allow gradual changes in local
background representations. Adequacy of color according to statistics in the entire back-
ground is replaced by local weighted likelihoods over bands, which leads to the formulation
of the short-sight energy, to be minimized with respect to candidate partition:

n
Bl = Y { [ gt i [ widx 0L ) oedd, (00x+ 0201, | ©
i=1 Q4 Bl
According to eq. (5) and (6), as background pixels are considered increasingly far from the
objects, the contributions of these pixels decrease, both in the estimation of likelihoods at
time ¢ and in the energy at time 7 4 1. Notice that a single background pixel may be included
into more than one band, and thus intervene in the short-sight background representations
of several objects. For instance, this is the case for the background part located between the

two close persons in fig. 1.

4 Modeling temporal variation of color distribution

The second issue that we focus on is the possible overlapping of color distributions between
regions, arising when objects share several colors, e.g the moving disks in fig. 3. Regard-
less of the perception of background, i.e. short-sighted or global, such overlapping may be
especially disturbing for two adjacent objects (or an object and background). The two re-
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gions compete with each other with respect to shared colors, and the evolution of pixels is
biased towards the region in which the likelihood is the highest. We tackle this problem by
explicitly penalizing excessive variation of color distributions between successive frames,
using histogram distance. We rely on the reasonable assumption that the distribution of each
color within the tracked region and background exhibit small variations between successive
frames. Hence, we integrate into energy (6) a term penalizing strong variations of region and
band histograms between current and previous times:

Ess.tveplPy1] = Z{/l log !, (x)dx — w(d(x, Q) logq, (x)dx

4 i
i=1 t+1 Bt+1

(00| + 2.0 (1 1)+ (1.8)) |
@)

where J is a distance measure between histograms. According to this energy formulation, no
assumption is made on the static distribution of color, but only on its variation. Moreover,
we do not theoretically impose that object and background should have maximally differ-
ent colors. Commonly employed measures for PDFs are the Kullback-Leibler divergence,
the Bhattacharyya coefficient, or the Hellinger distance. In this paper, we chose to use the
symmetrized Kullback-Leibler divergence:

It (p.0) = [ (ple) = a(@))log () ~log(a))da

Originally, distances previously cited were designed to compare PDFs instead of histograms
directly. Over a given region, the PDF can be estimated by normalizing the histogram by the
region area, such that the sum of bins in the PDF is unitary. However, as regards temporal
variation of color occurrences, it is relevant to work with non-normalized histograms. An
undesirable property of using PDFs to penalize color variation is that adding a pixel p into
a region slightly changes the distribution of all colors within this region. All bin values are
modified, regardless of color I(p). This may lead to unwanted behavior of the evolving
region, as it can be encouraged not to add a pixel which is actually part of the object, if
the energy increase on other bins exceeds the energy decrease on bins near I(p). Using
histograms naturally prevents this problem, since the addition/removal of a pixel p does not
change the bin value of colors unrelated to I(p).

If computed on histograms rather than on PDFs, the distance value is meaningful only
if the two compared histograms result from regions having similar areas. Indeed, if the
tracked object undergoes negligible change in its area between successive frames - i.e. we
have |Q +1| ~ ’Q ‘ - the PDF distance can be expressed directly in terms of the histogram
distance. Considering the Kullback-Leibler symmetrized divergence, the following simplifi-
cation applies:

AR 1 ;
. (rsm |Q;|) Ty (o) ®

In most studied image sequences, the variation of the proportion of area covered by the object
or background is rather small compared to the total area of the image. When comparing
histograms instead of PDFs, the range of distance is modified. In this case, the absence
of normalizing expression 1/ ]Q}‘ in eq. (8) can be compensated by changing the weight
associated with the temporal variation term.
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5 Optimization

Functionals over regions are most often optimized by gradient descent applied on a level set-
based reformulation, either of the Euler-Lagrange equation or of the energy itself. Instead of
doing so, we minimize energy (7) with the recent variational region growing approach [16],
which we embed in a greedy evolution scheme. In addition to its purely algorithmic benefits
- direct evolution of a set of pixels instead of a real-valued level set function, no need for
time step parameter, ad hoc stopping criterion - it avoids to perform continuous calculus of
variations. The partition-dependent optimization problem is turned into a discrete labeling
problem, similar to Markov random fields. Let ¢ : D — {0,...,n} be the labeling function
such that ¢ (x) = i means pixel x is assigned to region Q'. Energy (7) is discretized in space
and reformulated as a functional of labeling ¢ (index 7 + 1 is dropped for simplicity and & is
the Dirac delta function):

n
Bsrveoldl = ¥ { ¥ {80000~ )og )~ 5(6 00 (e .01 oxe )
i=1 xeD
+4 (ke (W0, 1) + Tk (k’w],k:‘))} to ) 89 -9y)
(x,y)eG
where background pixels are selected using 0 (¢ (x)). Clique G is the set of couples of neigh-
boring pixels. When considered at time ¢ 4 1, distances to objects d as well as histograms
over objects / and bands k are now themselves functionals of the labeling:

di[x 0] = o eDn‘n‘;’n HX yll
Z S(o(y)—i KO'(ItJrl(y) a)
yGD
Z (¢ dl v, 0) Ko (Ii11(y) — o)
yeD

On the contrary, since they depend on histograms at time ¢, likelihood functions ¢ and g
are independent from labeling ¢. Starting from an initial configuration taken as the labeling
of partition P, current labeling is evolved according to the region competition principle [17]
until it leads to a local minimum of Egs.Tycp. At each iteration, the evolution process con-
siders a set of candidate pixels A, containing pixels having at least one differently labeled
neighbor, i.e. located on inner or outer boundaries of objects. For each pixel x in A, we
consider a set of candidate labels L(x) which ¢ (x) may be switched to. Most of the time,
pixels are on the interface between two regions only, so that |L(x)| = 1. Trivially, the set of
candidate labels has more elements for pixels located at junctions between more than two
regions. The decision of switching labels of candidate pixels is made according to the energy
decreasing they lead to. Let ALE[¢] be the induced energy variation of labeling ¢ when a
single pixel v is switched to new label [, provided that [ € L(v):

[ ifx=v

AlvE[¢] =E[§]-E[¢] st o(x)= { ¢(x) otherwise

Variation AL E[¢] is computed for all pixels v € A and for all € L(v). Pixels and associated
labels such that AIVE[(])] < 0 are subsequently sorted by increasing variation. Among all
pixels leading to energy decreasing, only the first p pixels are actually switched, in order to
maintain stability. In the experiments we made, p was relatively small compared to |A|. Tt
should be further noticed that energy variation (9) is not computed as is. Otherwise, due to
the nested functionals over ¢, the algorithmic complexity of a brute-force implementation
would be O(|D[?). In practice, it only requires O(w? + 6™) operations, where the w? term

9
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corresponds to the update of distance d in the circular neighborhood of radius w around v,
and the 6™ term is the cost of modifying histogram bins over m-dimensional balls (with radii
being functions of &) around 7,41 (V).

6 Experiments and discusssion

We provide experimental results on both synthetic and natural image sequences. Histograms
were computed in the initial RGB space quantified to 64 levels per channel. The standard
deviation o for kernel-based estimation was set to 0.75. We considered the segmentation
in the first frame as an available input. For each dataset, weights A and @ were tuned to
achieve the best segmentation. In the optimization process, the number p of modified can-
didate pixels at each iteration was typically set to 20. Reported processing time for a single
typical 720 x 576 frame was in the order of 5s, with a C++ implementation running on an
2.6GHz Intel Core2 Duo architecture.

Ground truth reference segmentations were available for datasets shown in figs. 2 and 3. Ac-
curacy with respect to ground truth was quantified using the Dice similarity index. The *Toy
crocodile’ dataset depicted in fig. 2 holds a single moving object and a static background,
each one having distinct colors. Fig. 3 depicts the results obtained on the synthetic "Moving
disks’ sequence. With this dataset, we aim to evaluate the tracking ability of our model in the
difficult case where object and background have strongly overlapping color distributions. In
addition to color, the background contains non-tracked moving structures similar to the target
object in terms of shape and motion (random translations and rotations). For both sequences
with ground truth data, the obtained Dice percentage was around 98%, which corresponds to
fairly accurate segmentations.

The purpose of the experiment shown in fig. 4 is to demonstrate the performance of our
approach in case of both moving camera and dynamic object. The local and fuzzy repre-
sentation of background data allows our method to be robust against gradual background
changes generated by ego-motion. Fig. 5 depicts comparative results of multitarget pedes-
trian tracking on a dataset taken from the PETS 2009 benchmark database' with different
energy configurations, in order to show the improvements made by the short-sight model-
ing of background and the integration of temporal color histograms variation. The first row
shows tracking results obtained with minimization of energy (4), i.e. with likelihood model-
ing over the entire background and no penalty on temporal variation. In this case, the region
competition quickly becomes unable to sufficiently constrain the evolving regions and pre-
vent leaking outside real objects. Without constraints, once the region has included tiny parts
of background in a frame, it inevitably propagates in the background in subsequent frames.
Replacing the global modeling of background by our short-sight perception managed to in-
crease object/background color likelihood discrepancy and thus to reduce unwanted propa-
gation in the background, as shown in the second row. The integration of histogram temporal
variation (third row) allows to advantageously contrain regions within actual objects, as one
would obtain by adding shape and motion priors (see for instance results obtained in [3]).
Hence, in comparison with shape prior-based approaches, we believe that our method has
potential in the sense the tracking process is basically constrained by a data term without
additional application-dependent shape priors.

Ihttp: //www.cvg.rdg.ac.uk/PETS2009
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7 Conclusion

We introduced a short-sight perception modeling of background for joint segmentation and
tracking, focusing on the neighborhood of tracked objects to extract consistent statistical
data for accurate separation between objects and background. To account for temporal con-
sistency, we integrated a novel data term explicitly based on temporal variation of color dis-
tribution within objects and local background regions. As a possible extension, the method
proposed in this paper can be easily modified to incorporate shape and motion priors. In this
case, additional terms can be added into the spatio-temporal model. Future work will also
include testing and evaluating the proposed model with other relevant color spaces (YUV,
Lab, etc.), especially those in which brightness and pure color components are decoupled.
We might incorporate motion estimation as well, in order that color variation and optical
flow benefit from each other to perform spatio-temporal segmentation.

Figure 2: Single target tracking in case of few overlap between static background and object
color distribution

Figure 3: Single target tracking in case of strong overlap between moving background and
object color distribution

Figure 4: Single target tracking in case of ego-motion
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