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Abstract

A dynamic scene and, therefore, its visual observations are invariably determined by
the laws of physics. We demonstrate an illustrative case where physical explanation,
as a vision prior, is not a commodity but a necessity. By considering the problem of
ball motion estimation we show how physics-based simulation in conjunction with vi-
sual processes can lead to the reduction of the visual input required to infer physical
attributes of the observed world. Even further, we show that the proposed methodology
manages to reveal certain physical attributes of the observed scene that are difficult or
even impossible to extract by other means. A series of experiments on synthetic data as
well as experiments with image sequences of an actual ball, support the validity of the
proposed approach. The use of generic tools and the top-down nature of the proposed ap-
proach make it general enough to be a likely candidate for handling even more complex
problems in larger contexts.

1 Introduction
Computer vision is concerned with the understanding of the physical world through the anal-
ysis of its image(s). Such an understanding may be defined at various levels of abstraction.
Whatever the level of abstraction may be, this understanding is always associated with a
context, i.e. an assumption of a generative process that produces the observations. It is con-
venient to think about such a context as a set of rules that transform some initial conditions
into images. In this work, we are interested in deriving a physically plausible explanation of
a dynamic scene. Thus, the respective rules governing the generative process are the laws of
physics.

We argue that by exploiting this type of context as a prior, we can derive very useful
information for a dynamic scene, that is difficult or even impossible to derive by other means.
Consider for example the testbed scenario according to which we are interested in estimating
the state of a uniformly colored bouncing ball through its observation by a single or by
multiple calibrated cameras (Fig. 1). By employing standard computer vision techniques,
accounting for the position of the ball at each time step is not trivial. The possibly inadequate
acquisition frame rate may lead to aliasing and the possibly large shutter time may lead to
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Figure 1: A ball is thrown towards a table with a high back-spin. By incorporating physics-
based simulation, we infer the ball’s 3D trajectory (a), and its linear and angular velocities
from a single camera (cam. 7). The proposed method identifies that a back-spin is the cause
of the reduction of the outgoing angle of the bounce. The green ellipses in (b) are projections
of an equator of the ball and the arrows represent the direction of the estimated angular speed.

motion blur. On top of the above mentioned difficulties, for some aspects of the state of
the ball (i.e., its orientation and/or angular velocity) there is no direct evidence, whatsoever.
The problem becomes even more challenging when we are interested in solving the above
problems based on single-camera observations and/or when, due to occlusions, the available
set of visual observations becomes even more limited.

We show that through the direct incorporation of explicit physics we are able to tackle
these challenges. We demonstrate how hidden variables like the position of the ball when it is
occluded, its orientation and angular velocities, can be estimated. We highlight that physics
provide a strong prior, which permits the successful treatment of these challenges, even for
the case of single camera 2D observations that may be incomplete due to occlusions. The
incorporation of physics is performed in a clean, top-down fashion that could be generalized
and scaled towards solving larger problems in different contexts.

The proposed framework becomes possible because of the evolution of optimization
methods, the advancement of physics-based simulation and the availability of substantial
computational power. Powerful optimization techniques enable efficient optimization of
hard, multi-dimensional problems [16]. Physics simulation has advanced to a point where
computational demands can be efficiently handled, realism is a common denominator in
most physics simulators and the extension of simulators is easy due to their carefully de-
signed software architectures. Moreover, parallel multicore technologies like contemporary
CPUs and GPUs allow for the computation of thousands of simulations per second. Although
not exploited in this work, the latter further extends our method’s potential.

2 Relevant work
In the past, several researchers have stressed the benefits stemming from the consideration
of physics as integral part of computer vision processes. Although beyond the scope of this
work, we mention approaches [12, 17, 19, 25] that exploit the physical nature of light to
process images and estimate or predict otherwise unaccountable information.

The prevalent case study of employing physics in vision is the problem of 3D human
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tracking. The dynamics of the human body can be exploited towards the formation of strong
priors. Popović and Witkin [21] rectified 3D motion capture data to make them compli-
ant to physical constraints. Vondrak et al. [24] fused motion planning, contact dynamics
and a ground assumption to track humans from multiple cameras. Brubaker et al. [6, 7, 9]
employed realistic metaphors of the lower body dynamics to estimate and predict walking.
Going further, they incorporated a friction model for a ground that affords human motion
upon it [8].

There are also approaches that reflect physics implicitly or metaphorically. Brand et
al. [4, 5] exploited the physical notion of causality in order to perform qualitative reasoning
in computer vision problems. Delamarre [14] assigned a physical behaviour to a contour
model that drove the optimization process of recovering it. Chen et al. [11] were able to
track a basketball, while in the air and despite occlusions, by assuming the parabolic na-
ture of free flight. Papadourakis and Argyros [20] identified the physical notion of object
permanence as the ambiguity resolver for the case of multiple objects tracking. Sethi and
Roy-Chowdhury [22] gave physical substance to image features and used methods, usually
employed in physics, in order to model activities in image sequences.

This work is most closely related to the works in [3, 15, 18]. Metaxas and Terzopou-
los [18] defined a continuous Kalman filter that was able to track a deformable object. This
was achieved by a detailed motion model that was tightly coupled to the optimization pro-
cess. Although interesting, the extensibility of their approach is hindered by this tight cou-
pling. Bhat et al. [3] performed 3D tracking of an object by searching over parameterized
experiments that optimally project back to an image sequence. However, the shape of the
object and the restriction that it is tracked while in flight does not expose the full potential
of employing physics. Finally, Duff and Wyatt [15] used physical simulation and search
heuristics to track a fast moving ball, despite occlusions. They reasoned upon the ball’s 2D
position but they did not consider the 3D case, or the hidden variables of ball orientation and
angular velocity.

Despite the significant amount of existing work, no existing study demonstrates the full
potential of binding vision to physics-based simulation. We try to fill this gap by proposing
a method that is generic, top-down, simulation based and incorporates realistic simulation of
physics. As a result, and to the best of our knowledge, the proposed method is the first to
consider physical properties that can be estimated through physics-based simulation, even in
the case of single camera observations and severe occlusions.

3 Methodology
Let a colored ball be thrown on a table so that it bounces for several times and then rests.
The 2D image position of the ball can be easily recovered for every time step and for every
camera that views it for the case of moderate velocities. Accurate recovery is problematic
for the case of larger velocities and especially around bounces, due to blurring and aliasing
(see Fig. 1). These problems hinder a bottom-up resolution of the problem, but, as it will be
shown, they do not prevent a top-down approach from being effective.

We consider the physical explanation e of the bouncing of the observed ball. We assume
that certain scene properties (mass, inertia, collision properties) and initial conditions (posi-
tion and velocities of the throw), together with the laws of physics, generate a 3D trajectory
which optimally projects back to all cameras and matches the observations o. We define an
objective function S that quantifies the discrepancy between the actual observations and the
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Figure 2: The two phases of the bouncing ball (a) flight and (b) bounce. Red arrows represent
impulses and blue arrows represent velocities. Angular velocities are perpendicular to the
image plane. Black arrows represent the air flow with respect to the flying ball.

camera back-projection of a simulated parameterized ball throwing experiment. The latter
can be sub-sampled to match the acquisition rate of the actual camera set. This also accounts
for the aliasing effects of the acquisition process.

Since whatever is observed must be physically plausible, the physical explanation e is
the minimizer parameter vector x of this objective function. In notation:

e = argmin
x

S (o,x) where S (o,x) = BackProjectionError(o,Simulation(x)) . (1)

Our method receives 2D or 3D trajectories that represent the course of a bouncing ball and
outputs the parameters of a simulated experiment that optimally matches the observations. In
the next sections we describe in detail the parameter space of the simulations (search space
for e), the simulation procedure as well as the minimization process.

3.1 Physics of the bouncing ball
In order to account for the dynamics of the trajectory of a bouncing ball we explicitly reason
upon an idealized, yet sufficient, physics model. We identify two alternating phases, namely
ball flying and ball bouncing. The two phases are detailed in Fig. 2. Since we consider
average effects over generally small time intervals, we discuss impulses rather than forces.
For a time interval dt and a function of force ~f over that interval, the respective impulse is
defined as f̂ =

∫
~f dt.

During its flight (Fig. 2(a)), the ball undergoes velocity changes that are inflicted by the
gravitational attraction and the resistance of the air. Gravity constantly exerts a downwards
impulse of f̂g = m ·~g, where m is the mass of the ball and ~g is the gravitational acceleration.
Given enough air resistance, at each time step t, the linear velocity ~ut and angular velocity
~ωt are decreased in magnitude due to friction (linear damping dl and angular damping da).
Also, an impulse f̂m = K · (~ut ×~ωt) that is perpendicular to the linear velocity and the axis of
angular velocity, makes the ball travel in a curved trajectory [1]. For every part of the flight
the standard equations of motion hold and suffice in order to predict the state of the ball.

At every bounce (Fig. 2(b)), a portion of the ball’s vertical energy is lost according to
an elasticity factor β ∈ [0,1]. An amount of dynamic friction redistributes energy between
its linear and angular motion in the horizontal, according to a friction factor α ∈ [−1,1].
The friction model adopted here is an extension of [2] to the 3D case and identifies friction
as the reason that scales the total linear velocity ~vt+1 of the contact point. This modeling
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accounts for a great variety of frictions. For example, both the glass ball (no friction) and
the super ball (extreme friction) can be modeled for α = 1 and α = −1, respectively. The
vertical axis of rotation has no contribution to the horizontal contact. Moreover, the impulse
which changes the horizontal linear momentum is also the negative impulse that changes
the horizontal angular momentum. All the aforementioned constraints define a system of
equations:

Sy~ut+1 = −βSy~ut
Sy~ωt+1 = Sy~ωt
Sxz~vt+1 = αSxz~vt
m ·~p×Sxz (~vt+1−~vt) = −I ·Sxz (~ωt+1−~ωt)

with
Sy = Diag([0,1,0])
Sxz = Diag([1,0,1])
~vk =~uk +~p×~ωk

(2)

These equations linearly relate the pre-bounce velocities ~ut , ~ωt to post-bounce velocities
~ut+1, ~ωt+1. Solving this system for time t +1 yields the post-bouncing state of the ball.

3.2 Physics-based simulation
Ubiquitous physics simulators are already able to account for the most part of the pre-
sented physics modeling. They also ease the incorporation of more detailed models via
modular architectures that are carefully designed for that purpose. In our scenario we aug-
ment such a simulator by incorporating the effects of f̂g and f̂m and by adjusting the col-
lision module so that it also accounts for the exchange of horizontal energy. The verti-
cal is already in agreement with our equations. The parameter vector of a simulation is
(m, I,β ,α,dl ,da,K,~s0,~u0, ~ω0,T ). The state of the ball

(
~lt ,~qt ,~ut , ~ωt

)
is the result of the in-

vocation of the simulator for a given parameter vector, where t is a time step of the whole
duration T and~lt ,~qt ,~ut , ~ωt represent position, orientation, linear and angular velocity (all in
3D space).

3.3 Optimization through Differential Evolution (DE)
Differential Evolution (DE) [13, 23] is an evolutionary optimization method. It depends
on only a few parameters that have an intuitive explanation and exhibits remarkable per-
formance in difficult problems of large dimensionality. DE effectively handles real-valued
multidimensional, potentially non-linear and non-differentiable objective functions. It per-
forms optimization by evolving a set of NH hypotheses Hg and dimensionality D. Being
evolutionary, DE is defined via its mutation, crossover and selection mechanisms that are
applied at every generation g.

During mutation, every hypothesis hg,i ∈ Hg becomes a linear combination of three ran-
domly selected, pairwise different hypotheses of the previous generation g−1.

hg,i = hg−1,r1 +F
(
hg−1,r2 −hg−1,r3

)
,r j ∼U

(
0,
∣∣Hg
∣∣)∧ rk 6= rl∀k, l. (3)

Mutation is controlled by the differentiation factor F ∈ [0,2]. Each mutated hypothesis hg,i is
then combined with hg−1,i in order to produce a replacement candidate ĥg,i in the crossover
phase.

ĥg,i ( j) =
{

hg,i ( j) , r j ≤CR∨ j = idxg,i
hg−1,i ( j) , otherwise , j = 1, . . . ,D,r j ∼U (0,1) , idxg,i ∼U (1,D)

(4)
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In Eq. (4), hg,i ( j) denotes the j-th component of the i-th hypothesis in the g-th generation.
The crossover constant CR controls the combination of individual parameters of hg,i and
hg−1,i. A random parameter index idxg,i is preselected in order to ensure that at least one
parameter of the mutated vector will survive the crossover.

Finally, in the selection phase, the replacement candidate actually replaces the original
one in the next generation, if it scores better in the objective function.

The original algorithm is parallel, in the sense that two consecutive generations are two
distinct sets. We consider a serial variant, where the two generations are mixed. This means
that a mutation may be based on already mutated vectors in the same generation. We have
experimentally observed this mixing to add quicker reflexes to the algorithm, leading to
faster convergence. We also consider a dithering parameter δ that modulates F at each
generation. Dithering improves convergence and helps in avoiding local optima [10]. The
DE variant of our choice appears with the coding DE/rand/1/bin in [23]. The input of DE is a
real-valued objective function f (in our case, BackProjectionError in Eq. (1)), the number of
generations NG, hypotheses per generation NH and constants F,CR,δ . The output of DE is
the real-valued parameter vector that optimizes f . In all experiments we used the following
parameterization for DE: (NG,NH ,F,CR,δ ) = (300,72,0.9,0.9,1.5).

4 Experimental results
A series of experiments were conducted to assess our method’s ability to account for 3D and
2D observations of a bouncing ball. From an implementation point of view, we used the DE
implementation of the SwarmOps1 library, the Newton Game Dynamics2 simulator and the
MATLAB3 platform for the rest of the logic.

4.1 Results on synthesized image sequences
A first series of experiments were carried out to assess the capability of the proposed method
to come up with physically plausible explanations of various simulated ball throws, per-
formed in different world contexts and initial conditions. We distinguished the parameters
representing scene properties (m, I,β ,α,dl ,da,K) and those representing initial conditions
(~s0,~u0, ~ω0). We generated 3 random scene property parameter vectors and 3 random ini-
tial condition vectors. We then considered all possible combinations resulting in a total
of 9 experiments. The experiment parameterizations generated 9 ball 3D trajectories for a
time duration of T = 4s, each. Each 3D trajectory was considered in conjunction with 6
levels of Gaussian noise at each of the 3 spatial dimensions, separately and with variances
0m, 0.03m,0.05m,0.1m, 0.2m and 0.5m, respectively. For each set of parameters, 20 rep-
etitions were executed. This protocol led to a total of 3× 3× 6× 20 = 1080 experiments
accounting for various world properties, initial conditions and amounts of noise. For each
experiment, the physics-based simulator produced a ground truth 3D trajectory of the ball
and the proposed method was employed to provide a physical explanation of it. We evaluated
the optimization accuracy by measuring, for each experiment, the average of the Euclidean
distances between corresponding points of the simulated and the recovered 3D ball trajec-
tories. The results presented in Fig. 3(a) show that the proposed method is able to perform

1http://www.hvass-labs.org/projects/swarmops/c/
2http://www.newtongamedynamics.com
3http://www.mathworks.com/products/matlab/
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Figure 3: The mean values and standard deviations for the errors on the experiments
with (a) synthetic and (b) real observations.
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Figure 4: Examples of actual and estimated 3D trajectories. The illustrated trajectories have
high left, low left and high right curvature, respectively. The respective average trajectory
point estimation errors were 1.38cm, 0.75cm and 0.83cm.

well even under severe Gaussian noise. This is because by conception, the method allows
for physically plausible solutions, only. Thus, observations that are heavily contaminated by
this type of noise cannot distract the estimation towards physically implausible solutions.

4.2 Multiview estimation of 3D trajectories

Experiments analogous to those of Sec. 4.1 were also performed in the real world, i.e., using
multicamera observations of an actual bouncing ball. For these experiments, we employed
the setup that is illustrated in Fig. 1(a). It consists of a 2×1m2 hard table, a red table tennis
ball of radius 2cm, and 8 synchronized and calibrated Flea2 PointGrey cameras. All cameras
provided images at a resolution of 1280×960 and at an acquisition rate of 30 f ps. Processing
was performed on a workstation that has an Intel Core i7 950 CPU @ 3.07Ghz and 6GB of
RAM. All computations were performed on a single thread of a single core of the CPU.

As a first step, the ball was detected in every frame for all sequences (all cameras inclu-
sive). We applied color thresholding to isolate red areas in every frame. We then filtered
each extracted connected blob based on its shape, to ensure high confidence detection and
excluded partially occluded and/or significantly blurred detections. 3D ball positions were
then estimated through multiview 3D reconstruction of the ball centroids.

We conducted several ball throwing experiments in our physical setup. We selected 8
of them according to our empirical criterion of diversity. Each one was input to our method
20 times. The optimization process of Sec. 4.1 was employed, where synthetic data were
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Figure 5: Estimation of the 3D trajectory of a ball from single camera 2D observations
(camera 3) and the assumption of a given physical world.

replaced by real data. The obtained results are presented in Fig. 3(b). Some examples of
actual trajectories and the respective estimates are shown in Fig. 4. As it can be verified, the
proposed method faithfully reproduces the actual 3D observations.

4.3 Single view estimation of 3D trajectories
We are interested in estimating the ball 3D trajectory by a single camera. Without any
physics-based prior information and for the case of a ball of known size, single view ball
3D localization depends on the ability to accurately estimate the ball’s projected shape and
size. In practice, this is problematic due to acquisition and processing artifacts, which lead
to errors in depth estimation that are difficult to treat in a bottom-up fashion. However, by
modeling the physics of the process, we are able to infer depth from a more reliable source,
the 2D trajectory of the ball on the image plane of a single camera. To demonstrate this, we
optimized S for 2D observations of a single camera and the non trivial cases of non-planar
(due to spin) trajectories. During optimization, the simulator generated 3D data from which
2D reference trajectories were produced by means of projection. The back-projection error,
i.e., the average Euclidean distance between back-projected and observed 2D positions of
the ball was guiding the optimization process. An exemplar 3D estimation is illustrated in
Fig. 5. It can be verified that the estimation from a single camera is almost indistinguishable
from the ground truth.

Interestingly, no post-processing is required to enforce the plausibility of the solution be-
cause implausible hypotheses are not considered at all. Even more importantly, even though
3D estimation from 2D trajectories relies on the knowledge of the respective ball heights,
we do not account for this knowledge explicitly. 3D reconstruction comes effortlessly, as a
byproduct of physics-based simulation. Another interesting observation is that the points at
which bounces are observable suffer from aliasing. However, since we also sub-sample the
simulator’s behavior at real acquisition rate, we also account for this type of aliasing.

4.4 Seeing through walls with a single camera
We also tested our method’s effectiveness under considerable lack of constraints, i.e., in the
case of partial observations due to occlusions. We recorded ball throws that were largely
invisible to camera 6 due to a purposefully placed large obstacle (see Fig. 6(a)). Based on
this partial evidence, the proposed method estimated the 3D trajectory of the ball from the
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Figure 6: Single view estimation of the 3D trajectory of a ball from partial 2D observations
(camera 6) and the assumption of a given physical world.

(single) view of camera 6. The ball was still visible to some of the rest of the cameras. This
information was only used to estimate a kind of ground truth for the 3D trajectory of the ball.
Figure 6 shows the actual observations, the ball trajectory as this was estimated by camera
6 and the ground truth as this was measured by the rest of the cameras. The estimation of
the 3D trajectory (see Fig. 6(b)) is not that accurate due to the lack of enough constraints.
Still, it is quite satisfactory given the fact that it has been obtained through single camera
observation and in the presence of occlusions.

4.5 Inferring angular velocity

The ball’s angular velocity cannot be estimated by any direct vision method in any of the
considered experiments. However, evidence regarding this parameter is encapsulated in the
overall dynamic behavior of the ball. By seeking for a physically plausible explanation of
the observed scene, the proposed approach reveals, as a byproduct, information regarding
the hidden variable of angular velocity.

We performed a series of ball throws with high back-spin, so that the ball resists its origi-
nal tendency to move forward (Fig.1). We then optimized S for the resulting 2D observations
of camera 7. An exemplar bounce is shown in Fig. 1(b). The proposed method inferred the
3D state of the ball accurately (once more, ground truth and estimated ball positions are
indistinguishable). Moreover, as demonstrated in Fig. 1(b), we were able to compute a qual-
itative measure of the ball’s angular velocity.

5 Summary

We presented a method that interprets a dynamic scene by binding vision to physics based
simulation. We combined a powerful optimization method and a detailed physics model
of a bouncing ball in order to track the latter in challenging scenarios. We experimentally
demonstrated that accounting for physics does not simply constitute yet another comple-
mentary source of information but rather, a strong prior that permits the treatment of under-
constrained vision problems. In fact, we demonstrated that by incorporating physics, we
may require less cameras/observations to obtain the same type of information or even gain
access to information that is otherwise “invisible” to a vision system. Given the continuous
advancement in optimization techniques [16], simulation tools and computational power,
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we believe that the proposed method holds great potential towards addressing problems of
greater dimensionality and complexity.
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