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A dynamic scene and, therefore, its visual observations are invari-
ably determined by the laws of physics. Based on the case-study of a
uniformly colored bouncing ball, we demonstrate that physical explana-
tion, as a vision prior, is not a commodity but a necessity. More specifi-
cally, by considering the problem of ball motion estimation we show how
physics-based simulation in conjunction with visual processes can lead to
the reduction of the visual input required to infer physical attributes of the
observed world. Even further, we show that the proposed methodology
manages to reveal certain physical attributes of the observed scene that
are difficult or even impossible to extract by other means. A series of ex-
periments on synthetic data as well as experiments with image sequences
of an actual ball, support the validity of the proposed approach. The use
of generic tools and the top-down nature of the proposed approach make
it general enough to be a likely candidate for handling even more complex
problems in larger contexts.
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Figure 1: The proposed method employs the assumption of a given phys-
ical world in order to estimate the non-trivial 3D trajectory of a bouncing
ball with spin and air resistance, from a single camera (a) with high ac-
curacy (b).

This work is most closely related to [2, 3, 4]. We go further by propos-
ing a top-down method that, at the same time, can be easily extended,
exposes the full potential of employing physics in vision and, because of
this, achieves an increase of the extracted information and a decrease of
the required visual input.

By employing standard computer vision techniques, accounting for
the position of the ball at each time step is not trivial. The possibly inad-
equate acquisition frame rate may lead to aliasing and the possibly large
shutter time may lead to motion blur. Thus, single view ball 3D localiza-
tion, which depends on the ability to accurately estimate the ball’s pro-
jected shape and size, becomes problematic.

In our formulation of the problem, we consider a more reliable source
of information, i.e. the physics governing the motion of the ball. Our
method receives 2D (single camera) or 3D (multiple cameras) trajectories
that represent the course of a bouncing ball and outputs the parameters of
a simulated experiment that optimally matches the observations. These
parameters can be used to reproduce/simulate the experiment anew, and
thus gain access to a wealth of information, at almost arbitrary time reso-
lution.

More specifically, we consider the physical explanation e of the bounc-
ing of the observed ball. We assume that certain scene properties (mass,
inertia, collision properties) and initial conditions (position and velocities
of the throw), together with the laws of physics, generate a 3D trajec-
tory, via simulation, which optimally projects back to all cameras and
matches the observations o. We define the back-projection error as the
quantity to be minimized in an optimization problem, whose hypothesis
space involves both scene properties and initial conditions. The simulated
experiment can be sub-sampled to match the acquisition rate of the actual
camera set. This also accounts for the aliasing effects of the acquisition
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Figure 2: The top-down consideration of the scene dynamics enables the
induction of otherwise unaccountable information, such as (a) the full
state of the ball while it is not visible to the camera that observes it due to
occlusions and (b) the spin of the uniformly coloured ball that makes it
travel in curved trajectories (again from a single camera).

process. Since whatever is observed must be physically plausible, the
physical explanation e is the minimizer parameter vector x of this objec-
tive function. In notation:

e = argmin
x

BackProjectionError(o,Simulation(x)). (1)

We extend the bouncing ball’s dynamic behaviour described in [1] to
the 3D case and also acknowledge air resistance as a factor that affects
it. We inject these dynamics in the Newton Game Dynamics1 physics
simulator that, together with its basis, form the full dynamics modeling.
We employ Differential Evolution [5] in order to perform the aforemen-
tioned optimization over the configuration of a simulated ball throwing
experiment on the Newton Game Dynamics simulator.

The method has been thoroughly evaluated in both synthetic and real
data that involved non trivial trajectories of a bouncing table-tennis ball,
having been observed from single and multiple cameras. We were able
to perform accurate motion estimation, from a single camera (Fig. 1),
even despite occlusions (Fig. 2(a)). Interestingly, the requirement that
“hidden” dynamics are forced to be in accordance with acquired observa-
tions, enables their inference (Fig. 2(b)). Overall, we demonstrated that
accounting for physics does not simply constitute yet another comple-
mentary source of information but rather, a strong prior that permits the
treatment of underconstrained vision problems. In fact, we demonstrated
that by incorporating physics, we may require less cameras/observations
to obtain the same type of information (Fig. 1) or even gain access to
information that is otherwise “invisible” to a vision system (Fig. 2).
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