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Abstract

In this paper, we propose a novel motion estimation framework based on the sparsity
associated with gradients of the parametrized motion field. Beginning with Shen and
Wu’s sparse model for optic flow estimation [15], we show the sparsity of the motion field
can be enhanced by increasing the degree of freedom of the parametrized motion model.
With such an enhancement, we formulate the motion estimation as an £y optimization
problem. Along with an /| norm regularization to the instant constancy assumption, this
problem is solved by a reweighted ¢; optimization approach. Experiments on constant,
pure translational, and affine motion models certify that the enhanced sparsity provides
improved accuracy for motion estimation.

1 Introduction

Optic flow extracts motion information from image sequences. It is very important for video
processing, analysis, and understanding, and is widely used in such applications as video
frame rate conversion, structure from motion, object tracking, and behavior analysis, etc.

Most existing optic flow estimation approaches are based on the constant intensity as-
sumption which deduces an under-determined linear system. To solve this ill-posed prob-
lem, following either the Lucas-Kanade local model [11] or Horn-Schunck global model [9],
many concepts and methods [5, 13] were proposed. These methods perform well when the
prerequisites employed hold. However, motion boundaries, where most of these prereq-
uisites break, are widely exist due to the complex textures and shapes of objects and the
coexistence of multiple moving objects.

To deal with discontinuities on motion boundaries, various regularization schemes for
the variational model were proposed. Black and Anandan introduced a robust penalization
instead of the square error [3]. Sun et al. introduced an approach to inference the flow filed
through a probabilistic model learned from real data [16]. Zach et al. formulated a TV-¢,
model to estimate flow filed [17]. The ¢; regularization is simple and effective to handle
discontinuities.
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To achieve accurate motion information, researchers proposed several parametrized mo-
tion models [2, 12]. Baker and Matthews proposed an unified framework for warping es-
timation which extends the Lucas-Kanade algorithm [2]. Employing an over-parametrized
motion model, Nir ef al. proposed a global energy to estimate motion parameters by extend-
ing the Horn-Schunck method [12]. As warping and over-parametrization enlarge the degree
of freedom of the motion model, parametrized motion model makes the optic flow estimation
inherently go towards the ill-posed problem.

Recently, inspired by the development in compressive sensing [8], Shen and Wu pro-
posed a sparse model for optic flow estimation [14, 15]. In this model, the wavelet transfor-
mation or the gradient is employed to expose the sparsity of the optic flow. As compressive
sensing provides a systematical theory for solving ill-posed problems, the sparse model lays
a foundation for optic flow estimation with the convex ¢; optimization. However, when the
motion consists rotational and scaling components, both the wavelet and gradient domains
are NOT sparse enough, which degrades the solution heavily, in Shen-Wu’s model.

In this paper, we propose a novel motion estimation framework by employing parametrized
motion model to enhance the sparsity of gradients over motion parameters. Along with mak-
ing conventional optic flow estimation be more ill-posed, the warping and parametrized mod-
els enhance the intrinsic sparsity associated with motion parameters. It is especially apparent
for cases that the motion is with rotation and scaling. With this observation, we proposed
to tackle the motion estimation problem on the basis of the gradient sparsity of motion pa-
rameters. Distinct to Shen and Wu’s approach, we formulate the flow estimation as an ¢
optimization problem which provides a deeper perspective about the nature of the problem
along with broadened solutions such as the reweighted ¢; minimization [7]. In addition, we
relax the constant intensity assumption with an ¢; norm instead of the square error which
contributes to the improvement of estimation accuracy.

The rest of this paper is organized as follows. Section 2 describes the parametrized
motion model. Section 3 illustrates the sparsity of gradient fields of motion parameters and
builds a novel sparse motion estimation framework. The solution to the proposed sparse
model is discussed in section 4. Section 5 provides experimental results for evaluating the
performance of the proposed method. Section 6 concludes this paper.

2 Parametrized Motion Model

Motion is more complex than pure translation. Let u and v be the horizontal and vertical
motion components, respectively. Most exiting optic flow estimation approaches are based
on this constant motion model. But with such a description, we cannot discover the internal
motion structures such as rotation and scaling. Following Nir ef al.’s notation [12], we
employ the following parametrized motion model
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to describe the optic flow at a given time instant #, where ¢ and 1) are basis functions, and
Py are corresponding motion parameters.
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Table 1: Summary of parametrized motion models. DOF denotes the number of parameters
in the model. The symbol ‘-’ indicates the corresponding parameter is NOT used.

Motion Model Parameters DOF

pP1L p2 p3 P4 P5s D6

Constant Motion | ¥ Lo - - 2
mwlo 1 - -

Pure Translation P | 1 0 x ) ) ) 3
w0 1y - - -

. O | x 1 0 0
Affine Motion T | 0 0 0 . y 1 6

The parametrized model is capable to describe a large set of motion with a diversity of
basis functions. If we take 2 parameters with basis functions ¢; =1, ¢, =0,71; =0, and 7, =
1, the model degenerates to the conventional constant motion model with (u,v) = (p1, p2).
Increasing the degree of freedom (DOF) of the model, i.e., the number of parameters, we get
the pure translation and affine motion models [12], as shown in Table 1.

The pure translation is a special case of general rigid motion limiting to simple transla-
tion. The detailed model for a given position (x,y) is

u=pi+px
V= p2+p3y

2

with basis functions in constant motion model augmented with ¢3 = x and 13 = y.
The affine model represents a very general set of motion, including rotation, scaling, and
skew. With the basis functions given in Table 1, the affine model is

u=pix+py-+ps

) 3)
V= p4x+ psy+ pe

where (x,y) is a given position on the image, and py,-- - , p¢ are affine parameters.

3 Parametrized Motion Estimation with Sparsity

To estimate optic flow, we follow the constant intensity assumption [9] as done in most of
existing optical flow estimation methods. When the motion is small, with the first order
Taylor expansion, a basic optic flow equation on each pixel (x,y) is derived as

Lu+ILyv+1 =0, 4

where I, I, and I, are the horizontal, vertical, and temporal partial derivatives of video frame
I(x,y,t), and u = dx/dt,v = dy/dt are the first order approximations of the horizontal and
vertical components of the optic flow, respectively.

To solve the under-determined linear system (4), additional constraints are expected. Be-
sides the conventional variational approaches, Shen and Wu proposed the sparse regulariza-
tion [14, 15] for optic flow estimation. They assumed both the Haar wavelet decomposition
and the gradient of the flow field are sparse.
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3.1 Sparsity Prior for Motion Estimation

Following Shen and Wu’s work, we assume that the parameter fields of the parametrized
motion model (1) are sparse in certain domains. Let the kth parameter field p, denote the N-
dimensional column vector constructed by stacking corresponding motion parameters over
the image, where N is the number of pixels in the image. We suppose the coefficient field g;
in domain ¥, is a sparse signal. Generally, the sparse coefficient field is obtained via a linear
transformation

8« = VP (5

where the transformation can be wavelet, DCT, curvelet, gradient, and so many on. If we
have the sparse coefficients g, the parameter field can be recovered by

pe=%Y"80 ©)

where ‘I’,:r is the inverse or pseudo inverse of ¥.
Employing the prior knowledge about sparsity, the general framework for parametrized
motion estimation is formulated as

¥ =argmin =argmin ) ||% H ,
pi =argmin||g]|,, = argmi ;H P, .
st. Lu+ILyv+L=0 VY(xy),

where g = (g, -+ ,8k] is the sparse vector field of coefficients, and | - ||, denotes the so
called ¢y norm which counts the number of non-zero values of a signal. The optic flow is
recovered with the optimized motion parameters p; according to the parametrization (1).

3.2 Sparsity of Motion Parameter Gradients

With the sparse framework (7), the sparse domain determines the estimation precision. In this
paper, we choose the gradients of motion parameters to apply the sparse regularization for
motion estimation. The reasons are: a) the gradient of motion parameters are with physical
meanings which makes it more intuitive to be understood than wavelet or DCT coefficients,
and b) the optic flow field appears strong piecewise discontinuity at object boundaries which
are intrinsically coherent with gradients.

Furthermore, the sparsity is enhanced when the DOF of the parametrized motion model
increases because the parametrization changes the sparse domain coefficients from piecewise
continuous toward piecewise constant. Fig. 1 shows the enhancement of the sparsity of the
gradient fields from the constant motion model to the affine motion model. Fig. 1(a) shows
the ground truth vectors of a simulated optic flow field with scaling and rotation. Fig. 1(b)
shows the horizontal (upper) and vertical (lower) components of conventional constant mo-
tion model, and Fig. 1(c) and (d) show the horizontal and vertical gradients of the two motion
components, respectively. The horizontal gradients are both sparse while the vertical ones
are rather dense due to the rotational motion. Fig. 1(e) shows six motion parameter fields
of the affine motion model. Fig. 1(f) and (g) show the horizontal and vertical gradients of
all affine parameters, respectively. Gradient fields of affine parameters are all sparser than
that of the constant motion model as the former are with non-zero values at only the motion
boundary. To make the comparison more clear, Fig. 1(h) and (i) show the gradients as 1D
signals for constant and affine motion models, respectively. In addition, Fig. 1(j) shows the
1D signals decomposing the motion field on the Haar wavelet domain. As shown by Fig. 1(h)
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Table 2: The quantitative comparison of the sparsity among Haar wavelet coefficients, gra-

dients of constant and affine motion. The threshold to determine non-zero is set to 0.1.
Wavelet Constant Motion  Affine Motion

Number of non-zero values 81.93% 75.39% 6.08%
Gini-index  0.7916 0.6345 0.9694

to (j), the wavelet representation is NOT sparse enough, while the affine gradients is the most
sparse representation.

In addition, we make two quantitative comparisons of the sparsity among Haar wavelet
coefficients and gradients of the constant and affine motion models. In one comparison, we
treat values smaller than a threshold as zeros and others non-zeros. In the other comparison,
we compute the Gini index of all signals being compared. According to the comprehensive
analysis provided by Hurley and Rickard [10], the Gini index is a good measurement for the
sparsity of signals. For the first criteria, the smaller the number of non-zero values is, the
sparser the signal is. And for the Gini index, the larger the sparser. From the data shown in
Table 2, the degree of sparsity of the wavelet coefficients is equivalent to that of the constant
motion model, while the affine motion model shows the strongest sparsity. This certifies that
the sparsity is enhanced by employing a parametrized motion model with increased DOF.

3.3 Gradient Sparsity for Parametrized Motion Estimation

According to the analysis in previous subsection, we use the sparsity associated with gra-
dients of motion parameters to construct the motion estimation framework. Let D, and
D, ; denote the discrete horizontal and vertical gradient operators, respectively. To estimate
motion parameters according to the gradient sparsity, we need to solve the following opti-
mization problem

p; =argmin HD pill
k g ia ; kPk t ®)

st. Lu+Iyv+1L=0 VY(xy),

where D = [D],, D], ] " denotes the discrete gradient operator with D" being the pseudo
inverse of the operator. The purpose of using different gradient operators for each parameter
is to improve the stability and accuracy of the numerical solution, because magnitudes of
gradients vary among different motion parameters.

4 Piecewise Continuous Motion Estimation

The ¢y problem in the motion estimation models (7) and (8) is a combinatorial optimization
which is generally very hard to solve. According to recent advances in compressive sens-
ing [8], if the signal is sparse enough, the problem can be approximately relaxed to a convex
{1 optimization,

» =argmin ) ||D ,
pi =argmi ;H kP, o

st. Lu+Iyv+1L =0 VY(xy),
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Figure 1: The comparison of sparsity between gradients of constant and affine motion mod-
els. (a) Vector representation of the simulated optic flow field. (b) The horizontal and vertical
components of the constant motion. (c) and (d) The horizontal and vertical gradients of both
horizontal and vertical components of the constant motion, respectively. (e) The six com-
ponents of the affine motion. (f) and (g) The horizontal and vertical gradients of all six
components of the affine motion, respectively. (h) and (i) The 1D representations of the 2D
gradients for constant and affine motion models, respectively. (j) The 1D representation of
the Haar wavelet coefficients.
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where || - ||s, denotes the ¢; norm which is the sum of absolute values of all elements of a
signal, e.g., |5 = X si.

Candes et al. found that model (9) does NOT work well for some cases as it penalizes
larger coefficients more heavily than smaller ones [7]. To achieve sparse and accurate solu-
tions, the reweighted ¢; optimization is employed [7],

pZ:argminZHWkapkH ,
P 7 4

(10)
st. Lu+Iyv+1L =0 V(xy),
where W, = diag (wk, 1yoee aWk,ZN) are the iteratively updated diagonal reweighting matrices.
After the [-th iteration, the weight for the next iteration is updated with
1
Wer = (1

+£

T
‘gk,i

where € is a small positive number to avoid dividing by zero.

Usually the constraints of constant intensity assumption (4) cannot hold accurately due
to the existence of noise. Shen and Wu relax the constraints with the ¢, norm [14, 15],
or in another name, the least square error criteria. But the ¢, relaxation performs poorly
at discontinuities and outliers [3]. On the other hand, the ¢; relaxation is robust on piece-
wise continuous signals [17] and performs better on motion boundaries. Thus we relax the
proposed model (9) and (10) with #; norm as

pj = argmin ;LZHkakH + Y [hu+ Ly + 1, (12)
Pk X by
and
pi = argmin lZHWkapkH + Y [Lu+Lv+1| ¢, (13)
Pr k Oy

respectively. Both models (12) and (13) are unconstrained convex minimization problems
and can be solved efficiently by descent methods [4]. For simplicity, we call models (12) and (13)
the ordinary and reweighted ¢; model in the following, respectively. Both models are com-
bined with the constant, pure translations, and affine motion model separately.

5 Experiments

In this section, we perform the proposed sparse framework on the Middlebury optic flow
benchmark [1] and use the standard measures of Average Angular Error (AAE) and End
Point Error (EPE) for evaluation. To show the validity and precision, we implement four
algorithms, which are Shen and Wu’s method [15], Nir ef al.’s method [12], the proposed ¢;
norm model (12), and reweighted ¢; norm model (13). Our implementation is based on the
f1-MAGIC toolbox [6].

As the first-order Taylor expansion employed in deriving the basic optic flow equation (4)
holds only for small motions, so we downsample all images to 1/4 of their original heights
and widths. The downsampled images is divided to 12 x 12 overlapping blocks. The pro-
posed models are applied to each image block. For the pixels within overlap areas, the final
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Table 3: The performance comparison on the Middlebury dataset. Shen and Wu’s
method [15] is denoted as SW. Nir ef al.’s method [12] is denoted as Nir, the proposed
model (12) with three motion models listed in Table 1, i.e., the constant motion, pure transla-
tion, and affine motion, are abbreviated as CGS, PTGS, and AFGS, respectively. While cor-
responding results of the proposed model (13) are denoted as CGSR, PTGSR, and AFGSR.
AAE
SW Nir CGS CGSR PTGS PTGSR AFGS AFGSR
Venus | 6.5389 6.6619 6.2627 5.4088 5.6405 52637 52454 5.0754
Grove2 | 4.1054 43201 3.7880 3.6744 3.7202 3.6452 3.7106 3.6692
Grove3 | 8.4899 8.2010 8.0865 7.9667 7.4611 7.4299  7.1181 7.1159
Dimetrodon | 5.3368 5.6604 4.6728 4.6303 43994 4.3894 44076 4.3971
EPE
SwW Nir CGS CGSR PTGS PTGSR AFGS AFGSR
Venus | 0.1619 0.1782 0.1543 0.1371 0.1429 0.1352  0.1357 0.1273
Grove2 | 0.1000 0.1057 0.0920 0.0891 0.0900 0.0881 0.0897 0.0888
Grove3 | 0.2759 0.2619 0.2604 0.2567 0.2402  0.2384  0.2240  0.2242
Dimetrodon | 0.1101 0.1184 0.0968 0.0961 0.0913 0.0914 0.0914 0.0912

flow vector is chosen from all estimated candidates by minimizing the sum of squared differ-
ence. To compare the models equally, the RANSAC based refinement scheme [15] and the
coarse-to-fine strategy are NOT adopted. For Nir ef al.’s method, we perform experiments on
their variational approach with the typical 2D affine motion model. The results are obtained
on downsampled images without using the coarse-to-fine strategy. Shen and Wu’s method
also performs the down-sampling scheme employed in our method.

As the magnitude of gradients varies with respect to the motion parameter, we use dif-
ferent kernels to build the discrete gradient operators. For constant motion, we use kernels
[1,—1] and [1,—1]7 to build D; and D,. For pure translation, we build D3 with kernels
[100, —100] and [100, —100]” while use kernels [1,—1] and [1,—1]7 to build D; and D,. For
the affine motion, we use kernels [1, —1] and [1, —1]7 to build D3 and Dg, kernels [100, —100)
and [100,—100]” to build Dy, D,, D4, and Ds. For other parameters, we set A = 1.5 in Shen
and Wu’s method, A = 11 in Nir et al.’s method. In both proposed models, we use a same A
for same motion model. More specifically, We set A = 3.3, A = 8, and A = 18 for constant
motion, pure translation, and affine motion, respectively.

The AAE and EPE of the methods on four test sequences are listed in Table 3. For
both criteria and all 4 test sequences, our models all perform better than both methods pro-
posed by Shen-Wu and Nir et al. This shows our sparsity model is suitable for piecewise
continuous optic flow estimation. Comparing the SW and CGS columns, our model pro-
vides more accurate results than Shen-Wu’s method. With same motion model, the optic
flow fields recovered by the reweighted ¢; model (13) is better than that by the ordinary ¢,
model (12), except the EPE on Grove3 with affine motion. To sum up, both proposed models
perform better and better when the DOF of motion model increases. This certifies that the
parametrization of motion model improves the motion estimation accuracy.

A special case in Table 3 is that, on Grove2 and Dimetrodon, the pure translation model
with reweighted ¢ scheme performs better than affine motion model with ordinary ¢; scheme.
This is because for certain regions of the motion field, pure translational motion is fine
enough. And further more, though it enhances the sparsity, the affine model also enlarge
the dimensionality of the problem to be solved which degrades the solution quality.

Some results of the tested optic flow estimation methods are illustrated in Fig. 2. From
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Dimetrodon

Ground

CGSR

PTGS L i

PTGSR k
arcs Y

AFGSR L i

Figure 2: The result optic flow fields. From top to bottom, the first three rows show the
Ground truth, results of Shen and Wu’s method[ 15], and results of the Nir et al.’s method[12].
The rest rows show results of the proposed ordinary and reweighted ¢; models alternately,

with constant motion, pure translation, and affine motion in turn.
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left to right, are the four test cases, which are Venus, Grove2, Grove3, and Dimetrodon,
respectively. The optic flow regions with gradual changes become better and better from
top to bottom. These regions are marked out by color boxes on ground truth. In the Venus
sequence, the proposed method achieves more crisp motion boundaries and/or more smooth
motion field (regions with affine motion) than Shen-Wu’s method in both blue boxes. Sim-
ilar results can also be found in the red and yellow rectangles marked out in Grove2 and
Dimetrodon sequences.

6 Conclusions

In this paper, we generalize the sparsity regularized optic flow estimation to parametrized
motion model. From the perspective of sparse signal recovery, we formulate the flow es-
timation as an ¢y optimization. By exploiting the gradient sparsity of parametrized motion
model, this problem is relaxed to an ¢; optimization. Along with ¢; norm regularization,
the optimization is reduced to unconstrained ¢; minimization. Experiments certify our ar-
guments on increasing the DOF of motion model enhances the sparsity of motion parameter
gradients and hence produces robust and accurate motion estimation results. In addition, the
reweighted optimization scheme contributes strongly to the improvement of accuracy.

In Shen and Wu’s work [15], a robust refinement strategy is proposed to achieve more
accurate estimation. This strategy is feasible in our method too. As the basic optic flow
equation holds on small motion only, the proposed method is only work on down-sampled
images. To estimate large motion on original images, coarse-to-fine strategy is expected.
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