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Abstract

The goal of this work is to discriminatively learn contour fragment descriptors for the
task of object detection. Unlike previous methods that incorporate learning techniques
only for object model generation or for verification after detection, we present a holis-
tic object detection system using solely shape as underlying cue. In the learning phase,
we interrelate local shape descriptions (fragments) of the object contour with the corre-
sponding spatial location of the object centroid. We introduce a novel shape fragment
descriptor that abstracts spatially connected edge points into a matrix consisting of an-
gular relations between the points. Our proposed descriptor fulfills important properties
like distinctiveness, robustness and insensitivity to clutter. During detection, we hypoth-
esize object locations in a generalized Hough voting scheme. The back-projected votes
from the fragments allow to approximately delineate the object contour. We evaluate
our method e.g. on the well-known ETHZ shape data base, where we achieve an average
detection score of 87.5% at 1.0 FPPI only from Hough voting, outperforming the highest
scoring Hough voting approaches by almost 8%.

1 Introduction

Object localization in cluttered images is a big challenge in computer vision. Typical meth-
ods in this field learn an object category model, e.g. from a set of labeled training images
and use this model to localize previously unseen category instances in novel images. The
two dominating approaches in this field are either sliding window [9] or generalized Hough-
voting [3] based. The final detection results are mostly returned as bounding boxes, high-
lighting the instance locations but some methods also return accurate object outlines.

In general, the detection approaches can additionally be divided into appearance and
contour based methods. Appearance-based approaches first detect interest points and then
extract strong image patch descriptors from the local neighborhoods of the detected points
using versatile features like color, texture or gradient information. In contrast, contour-based
methods exhibit interesting properties like invariance to illumination changes or variations in
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color or texture. It is also well-established in visual perception theory [5] that most humans
are able to identify specific objects even from a limited number of contour fragments without
considering any appearance information.

In this work we propose that also for a machine vision system, it is sufficient to solely
rely on shape cues for the task of object detection, i.e. we are deliberately neglecting appear-
ance information. In particular, we determine discriminative contour fragments of an object
category shape in a state-of-the-art machine learning algorithm. Additionally, we show that
the integration of local shape fragment descriptors into a generalized Hough voting scheme
enables to outperform previous methods on challenging reference data bases like the ETHZ
shape data base, without considering additional appearance based information.

1.1 Related Work

In this section, we recapitulate the main approaches addressing contour-based object cate-
gory localization. In [10], Fergus et al. showed a learning approach which incorporates shape
(besides appearance information) as a joint spatial layout distribution in a Bayesian setting
for a limited number of shape parts. Ferrari et al. [11] partition image edges of the object
model into groups of adjacent contour segments. For matching, they find paths through the
segments which resemble the outline of the modeled categories. In a later approach [13] they
investigate how to define contour segments in groups of k approximately straight adjacent
segments (kAS) as well as how to learn a codebook of pairs of adjacent contours (PAS) from
cropped training images [12] in combination with Hough-based center voting and non-rigid
thin-plate spline matching.

Ravishankar ef al. [26] use short line fragments, favoring curved segments over straight
lines allowing certain articulations by splitting edges at high curvature points. In [18],
Leordeanu et al. introduce a recognition system that models an object category using pair-
wise geometrical interactions of simple gradient features. The resulting category shape
model is represented by a fully connected graph with its edges being an abstraction of the
pairwise relationships. The detection task is formulated as a quadratic assignment problem.
Shotton et al. [28] and Opelt et al. [24] simultaneously introduced similar recognition frame-
works based on boosting contour-based features and clutter sensitive chamfer matching.

Lu et al. showed a method for fragment grouping in a particle filter formulation [20] and
obtained consistent models for detection. Bai et al. [2] captured intra-class shape variations
within a certain bandwidth by a closed contour object model called shape band. In [33],
Zhu et al. formulated object detection as a many-to-many fragment matching problem. They
utilize a contour grouping method to obtain long, salient matching candidates which are then
compared using standard shape context descriptors. The large number of possible matchings
is handled by encoding the shape descriptor algebraically in a linear form, where optimiza-
tion is done by linear programming. In a follow-up work [29], Srinivasan et al. showed
promising results when models are automatically obtained from training data instead of us-
ing a single category shape prototype. Again, their method relies on the availability of long,
salient contours and has high complexity with detection times in the range of minutes per
image. In [27], Riemenschneider et al. perform object detection by partially matching de-
tected edges to a prototype contour in the test images. In such a way, piecewise contour
approximations and error-prone matches between coarse shape descriptions at local interest
points are avoided. Another approach proposed by Yarlagadda et al. [32] aims on grouping
mutually dependent object parts of uniformly sampled probabilistic edges. In their Hough
voting stage, object detection is formulated as optimization problem which groups dependent
parts, correspondences between parts and object models and votes from groups to object hy-
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Figure 1: Mlustration of our object category localization method. Local edge fragments are
discriminatively trained in a Hough Forest analyzing a triple per fragment {A;,d;, ¢;}, where
A; is our novel fragment descriptor matrix, d; its corresponding center voting vector and ¢;
its class label. During testing descriptor matches vote for object centroid ¢ to hypothesize
object locations in the image. Best viewed in color.

potheses. Payet and Todorovic [25] presented an approach for object detection by mining
repetitive spatial configurations of contours in unlabeled images. Their contours are repre-
sented as sequences of weighted beam angle histograms and are transferred into a graph of
matching contours, whose maximum a posteriori multicoloring assignment is taken to repre-
sent the shapes of discovered objects. Finally, we refer to the approach of Amit and Geman
in [1] where randomized trees are used to perform shape recognition for handwritten digits.

1.2 Contributions

As can be seen in the comprehensive summary of related work in Section 1.1, many ap-
proaches were proposed that exploit shape information for object detection. However, we
observed that many researchers first put an enormous effort into learning a suitable object
model from training data [12, 24, 26, 28] but then neglect to directly apply this gained
knowledge in the matching or verification phase. Instead, techniques like error-prone cham-
fer matching are used to decide whether an object is present or not. We are convinced that
a detection system benefits from an approach which inherently unifies the strengths of the
individual methods instead of either solely relying on a particular technique or serially con-
catenating them. As a consequence, we propose to jointly learn a novel shape fragment
description with its spatial location information about the object contour. For recognition,
we can directly apply the learned knowledge in a generalized Hough voting manner.

A key issue of such an approach is to use a powerful local shape descriptor, which
should fulfill various requirements like distinctiveness, robustness to clutter and noise, in-
variance and efficiency. Since common local shape descriptors are limited concerning these
requirements, we propose a novel contour fragment descriptor which describes relative spa-
tial arrangements of sampled points by means of angular information. As it is shown in
the experiments in Section 3 our novel descriptor outperforms related methods like shape
context in this scenario.
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2 Discriminative Learning of Fragments

In this section we present our novel approach for object detection. As underlying represen-
tation we use connected and linked edges as it is described in Section 2.1. From the obtained
edges we extract local fragment descriptions using a novel, discriminative descriptor that
captures local angular information along edges (see Section 2.2). To learn a model from a
set of labeled training images we train a Random Forest on the obtained descriptors storing
the relative location and scale of the fragments with respect to the object centroid for the
positive training samples, as it is explained in Section 2.3. At run-time, we cast probabilis-
tic votes for possible center locations of the target objects in a generalized Hough voting
manner. The resulting local maxima in the Hough space serve as detection hypotheses. In
Figure 1 we illustrate our proposed method.

2.1 Edge Detection and Linking

As a first step we extract edges of the input image. We use the Berkeley edge detector [22] in
all experiments and link the edges into oriented, connected point coordinate lists. We want
to explicitly stress the importance of point linking which has great impact on the obtained
fragments, since different splits of T-junctions or gap closing yields very different fragments.
The obtained lists of connected points state the basis for all subsequent steps which is why
we introduce the following terminology, used throughout the rest of this paper: We name
all lists as edges, while we denote all extracted edge parts as fragments. In our method all
analyzed fragments have the same length, consisting of exactly N points.

2.2 Shape Fragment Descriptor

To be able to discriminatively learn the shape of local, equal sized fragments, we need a
powerful shape descriptor. Typical local fragment descriptors are shape context [4], turning
angles [7], beam angles [25], partial contours [27] or contour flexibility [31]. We propose a
novel descriptor which, as shown in the experiments in Section 3, outperforms related meth-
ods. Our shape descriptor is related to the recently proposed descriptor of Riemenschneider
et al. [27] which also uses angles between fragment points. However, we want to stress
crucial differences as follows: First, we employ another sampling strategy to define the an-
gles and second, we differ in the selection of descriptor values. We analyze angles defined by
lines connecting a reference point and the fragments’ points. This is in contrast to [27] where
only relative angles between points on the fragments are considered and in addition no fixed
length of the fragment is assumed. Moreover, we are using a fragment-dependent reference
point which is defined by the fragments’ bounding box and therefore also contributes to a
discriminative and local description of each considered fragment (see Fig. 3). Our sampling
strategy was carefully designed for usage within a discriminative learning framework and
is crucial for reasonable performance since otherwise we would not be able to distinguish
between different locations on regularly shaped object parts as e. g. the semi-circles in Fig. 2.

We first outline the main definitions for extracting the fragment descriptors and then
discuss the general properties of the obtained representation in detail. Let an individual edge
B; be defined as a sequence of linked points B; = {by,ba,...,by,}, where M; = |B] is the
total number of connected edge points and M; > N. We always analyze fragments of the same
length N. Therefore, we compute (M; — N + 1) fragment descriptors for every individual
edge B;. For every fragment we define an N x N descriptor matrix A with diag(A) = 0.
Every entry a;;(i # j) is defined by the angle between a line connecting the points b; and b;
and a line from b; to a reference point po, which is defined by the upper left corner of the
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Figure 2: Selected contour fragment prim- Figure 3: Mappings of intra-class varia-
itives (first row) and the corresponding, tions for similar locations on object con-
unique angular abstractions into the pro- tours to descriptor matrices. Blue circles
posed fragment descriptor matrices (second highlight the selected fragments and red
TOW). squares indicate their center position.

fragments’ surrounding bounding box. In such a way, we define

o;j = (bibj,bjpo) Vi,j=1,...,N )

where b;,b; are the i and j™* points on the respective fragment. Hence, we are mapping the
fragment description onto the interval [0, 7]. For a single fragment, the angles are calculated
over all possible point combinations, yielding the descriptor matrix. Our proposed descriptor
has a number of important properties which we discuss next.

Distinctiveness Most importantly, descriptors calculated from locations on the target ob-
ject contour need to be discriminative to those generated from background data or clutter.
Furthermore, we want the descriptors to be distinguishable from each other when they are
calculated from the same object contour, but at different locations. This property is of par-
ticular interest when features are trained together with their spatial support. On the other
hand, features that are computed at similar locations but from different training samples
should result in similar representations. In other words, the descriptor should be able to cap-
ture intra-class variations and tolerate small perturbations in the training set. Our descriptor
satisfies both requirements as can be seen in Figures 2 and 3.

Efficacy Another important property of our descriptor is the efficacy of data abstraction.
Using a measure to describe relations between connected points has multiple advantages over
considering each pixel independently. It assists to identify discriminative fragments during
training and simultaneously reduces noise since information is encoded in a redundant way.

Invariance Features are often classified according to their level of invariance to certain
geometrical transformations. For example, features invariant to Euclidean transforms keep
unchanged after applying translation and rotation. Increasing the degree of invariance gen-
erally decreases the distinctiveness and thus weakens the distinctiveness property. Our pro-
posed descriptor is invariant to translation and actively encodes orientational information,
therefore relying on the so-called gravity assumption.

Efficiency

Features should be computable in an efficient manner. In our case, we can precompute
the values for all possible pixel combinations, hence reducing actual feature composition to
a lookup-operation which can be done in constant time for any fragment. Since the angular
description in Equation (1) corresponds to a surjective mapping f : I C R? — [0, 7], we
can provide a lookup-table (LUT) for all possible point pairs (x,y) € I as follows. The
maximum Euclidean distance between the reference point pg and any fragment point b; is
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bounded by the fragment length N. Hence, the area under the lower right quadrant with
center pg corresponds to the total number of possible fragment point locations and defines
I. Consequently, we can precompute a square matrix of size |I| x |I| holding the angular
descriptions according to Equation (1) for all tuples (x,y) € I. This matrix then serves as
LUT during feature calculation for arbitrary fragment points.

2.3 Discriminative Fragment Learning

For discriminatively learning our proposed contour fragment descriptor, we use the recently
introduced Hough Forest [15]. Hough Forests are an extension of the standard random for-
est [6] which in addition to finding optimal splits of the training data also optimize grouping
of class specific object center votes. In such a way, a test sample is classified according to its
appearance as well as its localization properties.

Each tree is constructed on a set of training samples { & = (A;,¢;,d;)}, where A; is the
fragment descriptor matrix, c; its corresponding class label and d; the offset vector, describ-
ing the displacement to the center for positive training samples (see Fig. 1). Positive samples
are selected by taking all edges within the bounding box annotations. The binary tests are
chosen according to [15], randomly reducing either class label or centroid offset uncertainty.

Once the entire Forest is constructed, the detection process can be started on the test
images. Edges are extracted from the test images and arranged into ordered, connected edge
lists B; with |B;| > N. For each B;, again a total number of (|B;| — N + 1) fragment descriptors
{A;} are computed and then classified into tree-specific leaf nodes. Please note that the
descriptors are only computed along edges, which significantly reduces the computational
costs in comparison to a sliding window approach or dense sampling as used in [15].

Since the voting vectors Dy, and class label probabilities Cy, are known in every leaf node,
we are able to cast the voting vectors into the Houg}éimage V in an accumulative way. All

L

pixel locations in V are incremented with the value D1 Finally, the resulting Hough image

is Gauss-filtered and its local maxima hypothesize the detected object centroids.

2.4 Ranking and Verification

The previous stages of our method provide object hypotheses in the test image and a cor-
responding score obtained from the Hough votes. Similar to related work [21, 23, 27] we
additionally provide a ranking according to a pyramid matching kernel (PMK) [16] where
histograms of oriented gradients (HOG) are used as features. The PMK classifier is trained
on the same training examples as used for the Hough forest. We use the classifier for ranking
and for verification where we additionally consider nearby locations and scales around the
proposed hypotheses. Including the local search is still efficient since our hypotheses gener-
ation stage delivers only a few hypotheses per image, therefore an order of magnitude fewer
candidates have to be considered as in a sliding window approach.

3 Experimental Evaluation

In order to demonstrate the quality of our proposed method, we performed several exper-
iments: First, we demonstrate improved performance of our novel fragment descriptor in
comparison to several related shape descriptors as shown in Section 3.1. Subsequently, we
show the performance of our method on challenging data bases like the ETHZ shape data
base [11] and the INRIA horses data base [17] (Section 3.2). We compare our results to sev-
eral competitive contour-based recognition approaches while we deliberately ignore methods
additionally using segmentations or appearance information as in [19, 30].
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length CA BA PC TA SC Ours
1=51 41.67 41.61 41.13 4049 37.13 33.60
1=41 43.15 42.67 42.68 42.14 3751 3593
1=31 4343 4348 4299 4281 3833 38.58

Table 1: Evaluation of descriptor performances at several lengths, showing the per-pixel
classification error in % (see text for definition) for each descriptor when learned in a ran-
dom forest. Our descriptor yields to the classification error of 33.60% for a length of 51,
significantly lower than all compared state-of-the-art shape descriptors.

3.1 Fragment Descriptor Evaluation

Due to the large variety of shape-based descriptors, it is vital to evaluate our proposed de-
scriptor in a quantitative experiment. Therefore, we designed an experiment to evaluate dif-
ferent shape descriptors within different learning algorithms for a classification task. In par-
ticular, we compared our proposed descriptor to five types of descriptors, namely the chord
angle (CA) [8], beam angle (BA) [25], partial contours (PC) [27], turning angle (TA) [7] and
shape context (SC) [4]. The learning algorithms we used were random forest, linear SVM
and a simple nearest neighbor classifier.

We define a test setup where we classify individual edge pixels on Berkeley edges, de-
tected in the giraffe category test images of the ETHZ shape data base. Specifically, we
compare the per-pixel classification results to the ground-truth edge annotations. Hence, we
define a classification error, describing the ratio of false classifications to all edge pixels.
The protocol for the experiment uses 50% of the images for learning a classifier and 50% for
testing. We extracted fragments (or quadratic patches containing edges for SC) at varying
sizes from the images, such that for all images a reasonable number of foreground edges
remained in the test set.

In Table 1 we list some selected results for fragment lengths / patch sizes of 31, 41 and
51 pixels, when learning the individual descriptors in a random forest framework. As shown,
our proposed descriptor outperforms all of the other descriptors at length / = 51 and is hence
well suited for use in a discriminative setting. Please note that increasing the length even
more may result in better classification scores, however, the number of edges belonging to
the object category contour might decrease. Using linear SVM or nearest neighbors for
classification results in approximately similar distributions of the scores. However, the mean
error is on average about 5 — 10% higher which suggests that random forest like classifiers
are better suited for our task.

3.2 Object Detection

Object detection performance is evaluated on the ETHZ shape data base [11] and the IN-
RIA horses data base [17]. For all our experiments, we use the following parameters. Our
forest consists of 12 decision trees, each with a depth of 15. The fragment length is fixed
to N =51, as suggested from the classification task in the previous section. We randomly
extract 10000 positive training samples from edges within the bounding box annotation. The
positive training images are all scaled to the median height of the selected training data base
and the aspect ratio is fixed. 10000 negative training samples are extracted from the same
training images, but outside of the bounding boxes. Detection performance is evaluated
using the strict PASCAL 50% criterion.

Since our method is not implicitly scale invariant, we run the detector on multiple scales.
However, this can be done efficiently since descriptor calculation takes constant time due to
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Figure 4: Object detection performance on ETHZ in comparison to [13, 14]. Each plot shows
curves for the 50% Pascal criterion and the 20%-IoU criterion of the methods proposed
in [13, 14]. Our results for 50% PASCAL criterion are shown in thick solid black. Note, that
we mostly outperform results of [13, 14] consistently over all classes although evaluating
under the stricter 50% PASCAL criterion.

the use of Look-Up-Tables and traversing the trees has logarithmic complexity. In practice,
the average evaluation time is restricted to a few seconds per image for our C implementation.

ETHZ shape data base The ETHZ shape data base consists of five object classes and a total
of 255 images. The images contain at least one and sometimes multiple instances of a class
and have a large amount of background clutter. All classes contain significant intra-class
variations and scale changes. Therefore, we run the detector on 15 different scales, equally
distributed between factors of 0.2 and 1.6. We use the same test protocol as specified in [14]
where a class model is learned by training on half of the positive examples from a class,
while testing is done on all remaining images from the entire data base.

In Table 2 we list the results of our described object detector for each object class in
comparison to current state of the art [21, 23, 27, 32] where divisions into voting, ranking and
verification stages are applicable. However, due to the large number of competing methods,
we only provide the scores of the initial Hough voting stage and the PMK ranking stage in
tabular form. Recognition performance is evaluated by ranking the hypotheses according
to their confidence scores. In the initial voting stage this confidence corresponds to the
accumulated values in the Hough space. For ranking, the confidence scores are updated
using the HOG-based verification as described in Section 2.4. Both voting and ranking are
evaluated at 1.0 FPPI. Ranking is quite efficient since on average only 3.5(!) hypotheses are
returned by our method. Finally, we also show results of our method for the full verification
step (where also nearby locations and scales are tested around the returned hypotheses) at
FPPI = 0.3/0.4, which is the standard measure for comparing results on ETHZ data base.

As can be seen in Table 2, we substantially outperform the currently best scoring methods
after both, Hough-voting and ranking stage. We achieve a performance boost of 7.5% over
the previously best voting method in [32], 18.1% over [27], 26.6% over [23], 24.5% over [21]
and even 34.2% over [14]. After applying the learned HOG models for ranking we are 11.0%
better than the previously best scoring method [27] and 15.6% better than [23] ([32] has no
scores for ranking). Finally, our method also shows high performance for the full verification
system, providing an average recognition score of 93.3/96.1 at 0.3/0.4 FPPI, which is ap-
proximately on par with the highest scores reported from contour-based approaches in [29]
(95.2/95.6). However, the authors in [29] do not provide scores for detection and refinement
stages individually which makes direct comparison difficult. Furthermore, their method has
a high computational complexity and detection takes minutes per image.

To further emphasize the contribution of our proposed descriptor with respect to the
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Voting Stage (FPPI=1.0) Ranking Stage (FPPI=1.0) | (FPPI=0.3/0.4)

ETHZ  Hough M?HT w, PC Group  Hough Our | [23]1+ [27]1+ Ours+ Our work
Classes [14] [21] [23] [27] [32] Forest [15] work | PMK  PMK PMK Verification
Apples 43.0 80.0 850 904 84.0 80.0 944 | 80.0 90.4 100.0 94.4/100
Bottles 64.4 924 670 844 931 70.8 909 | 89.3 96.4 95.5 100/100
Giraffes ~ 52.2 362 550 500 795 60.5 86.7 | 80.9 78.8 933 91.1/93.3
Mugs 45.1 475 550 323 67.0 73.1 923 | 742 61.4 88.5 80.8/87.2
Swans 62.0 58.8 425 90.1 76.6 81.3 733 | 68.6 88.6 93.3 100/100
Average 533 63.0 609 694 80.0 73.1 87.5 | 78.6 83.2 94.2 93.3/96.1

Table 2: Hypothesis voting and ranking showing detection rates (using PASCALS50 criterion)
for the ETHZ shape data base [11]. For the voting stage our coverage score increases the
performance by 7.5% [32], 18.1% [27], 24.5% [21], 26.6% [23] and 34.2% [14]. After
ranking we achieve an improvement of 11.0% over [27] and 15.6% over [23].

Figure 5: Examples for successful object localizations for some classes of ETHZ. The highly
cluttered edge responses (in blue) and the reprojected fragments (in red) for the object hy-
pothesis with the highest confidence per image are shown. Best viewed in color.

Hough Forest learning environment, we trained and evaluated on the same number of trees
using all 32 provided features of [15] (mostly appearance-based). To have a fair comparison
and accomplish each of the 15 considered scales in reasonable time, we evaluated on the
same locations as we did for our descriptor. As shown in Table 2, our single feature descriptor
clearly outperforms the standard Hough Forest using all 32 features (14.4% better).

In Figure 4 we show the detection rate vs. FPPI plots for all ETHZ classes in comparison
to all results provided by Ferrari et al. [13, 14]. Figure 5 illustrates some results for different
classes. We show the highly cluttered edge responses of the test images used for localization
and the corresponding reprojections of the classified fragments for an object hypothesis. In
addition, they can be used to approximately delineate the object contour. The inpainted
circles indicate the voting centers.

INRIA horses data base The INRIA horses data base [17] contains a total number of 340
images where 170 images belong to the positive class showing at least one horse in side-view
at several scales and 170 images without horses. The experimental setup is chosen as in [14]
where the first 50 positive examples are used for training and the rest of the images are used
for evaluation (120 + 170). We run the detector on 8 different scale factors between 0.5 and
1.5. We achieve a competitive detection performance of 85.50% at 1.0 FPPI, compared to
recently presented scores in [21] (85.3%) and [32] (87.3%). Moreover, we outperform the
methods in [27] (83.72%), [13] (80.77%) and [12] (73.75%).

4 Conclusion

In this paper we investigated the use of contour fragment descriptors for the task of object
detection. Our novel method discriminatively learns a number of local contour fragment
descriptors in combination with their spatial location relative to object centroid in a Random
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Forest classifier. We designed a fragment descriptor that abstracts spatially connected edge
points into angular relations in a matrix form and demonstrated that our proposed descriptor
shows distinctive patterns for differently shaped fragment primitives, while tolerating small
perturbations and intra-class variabilities. Experiments demonstrated that the proposed de-
scriptor significantly outperforms related shape descriptors. We further showed excellent
results on the well-known ETHZ and INRIA horses data bases. For example, our method
outperforms the currently highest scoring contour based methods by approximately 8% at
1.0 FPPI after the Hough voting stage. In addition, we demonstrated that back-projections of
the fragments voting for a hypothesis allows delineating the object outline. Our future work
will focus on turning this information into concise image segmentations.
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