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Abstract

This paper explores the possibility of acquiring inverggatitransport directly. The
current strategy of obtaining an inverse light transportrinanvolves two steps: First,
acquire the forward light transport matrifl(TM) and then calculate the inverse of the
f-LTM. Both steps of the strategy requires considerable adatjpnal power. In addi-
tion to computational cost, the measurement error incuatetthe first step inevitably
propagates to or potentially gets amplified in the matribeision step.

In this paper, we propose a sensing strategy that acquiegs\tarse light transport
matrix (-LTM) directly, without reconstructing thELTM. Our direct strategy reduces
both computational error and cost of acquiriAgrM. For that, we propose eompres-
sive inverse theory Following the compressible property 6L TM, a reconstruction
condition fori-LTM is introduced. This new framework implies a trade-oétiwveen two
factors: condition numbers of submatriced-afTM and the isometry constant of the il-
lumination pattern. Our direétLTM reconstruction method is then demonstrated with a
2nd-bounce separation experiment on an M-shaped pane.deerally by quantitatively
comparing our method with the existing two-stage approaaohmethod shows higher
accuracy with lower complexity. The proofs of main theoremima are contained in
the supplementary material. The compressive inverse theaeneral and potentially
useful for wider application.

1 Introduction

A forward light transport simulates global illumination énscene given direct lighting or
corresponding light source emission. It embodies the falwendering process, a corner-
stone of computer graphics, which aggregates the effeéglf bouncing in a scene. An
inverse light transport reverses the forward process; abks undoing of interreflections
and separation of light bounces in a real scelé 20]. In all current work, an inverse light
transport matrixitLTM) is obtained by inverting a forward light transport mat(f-LTM).
For a projector-camera setup(] 16, 27], af-LTM can easily exceed the size of 1 10P.

© 2011. The copyright of this document resides with its authoBMVC 2011 http://dx.doi.org/10.5244/C.25.38
It may be distributed unchanged freely in print or electedioirms.



2 X. CHU ET AL: COMPRESSIVE INVERSE LIGHT TRANSPORT

Acquiring such a largé-LTM can take hours or days while inverting tfi¢TM requires
various forms of approximation which compromises on theueacy of the inverse light
transport L0, 16, 27).

In this work, we propose a way of computindg.TM directly from the measurements
without the need for a prior and explicit reconstructiontod LTM. We show that within
the framework otompressive inverse thegiyLTM can be obtained in a similar manner as
thef-LTM without additional computational cost and aggregaedr from matrix inversion.
For simplicity, we assume a square matrix for light transpod defer the case of non-square
matrices to future work.

2 Previous Work

As this work concerns with reconstructingTM directly in the compressive sensing frame-
work, the methodology is related to the prior works in ineslight transport, forward light
transport acquisition, compressive sensing, and matvergion. We denote thfeLTM as T
henceforth.

2.1 Inverse light transport computation

Inverse global illumination was introduced by ¥tial.[28], but with the focus on estimating
reflectance properties, rather than compensating inpltiig patterns. Seitet al. [20]
proposed a theory of inverse light transport and demomrstigght bounce separation with
inverse light transport.

Inverse light transport can be computed by inverting thevéwd light transport ma-
trix [10, 12, 16, 27]. In all these works, thé-LTM is first reconstructed from the mea-
surements before deriving tie.TM from the f-LTM. In the conventional setting, the com-
putation ofi-LTM mainly involves solving the inverse problem

|out =TI in, (1)

wherelyt is the observed scene under global illumination gnds the input light pattern.
There are two approaches for solving the inverse light parigroblem in Eql. The first
approach solves E@.as a system of linear equatiori§.[Efficient methods of this approach
are the Jacobi method and the Gauss-Seidel method thavésviierative vector-matrix
multiplication. The second approach is to invert the matrix Matrix inversion ideally
corresponds to solving the matrix-matrix equafioh * = |, hence the second approach has
much higher computational complexity than the first apphoa@nceT ~ is precomputed,
given a newj,, loyt can be easily obtained with a single-step vector-matrixtiplidation.
However, inverting a large-siZd_ TM is computational and memory intensive, hence various
forms of approximation were introducetld, 12, 16, 27].

In contrast to this conventional procedure, our method keisahverse light transport to
be computed directly from the measurements, without thd fereexplicitly reconstructing
thef-LTM. By skipping the intermediate steps BETM reconstruction and by avoiding the
approximate light transport inversion, it is logical thatranethod will be more computa-
tionally efficient and accurate.

A recent work by O'Tooleet al. [17] computes the output image of an inverse light
transportin the optical domain, without explicitly comimgf thef-LTM or i-LTM. The work
is in the same spirit as our work in reducing computatiorgpst However, pre-computing
i-LTM is important when it comes to processing a video or a sega of images. Without
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an expliciti-LTM, the implicit matrix inversion process needs to be i@pd for each frame
of a video and hence incurs a high computational cost.

2.2 Forward light transport acquisition

A large body of work over the last decade in computer grapdmcscomputer vision has dealt
with acquiringf-LTM, indicating how a real scene responds to diffuse or gacllight from
projectors 9, 10, 18, 22, 26]. While we focus here on real scenes, the use of precomput
transport is increasingly common even for synthetic sceimeapplications like real-time
relighting [15].

The brute-force acquisition method turns on the projecixelp one by one while the
response of each projector pixel is recorded by a camerarodolumns in &-LTM. Alter-
natively, Hadamard light patterns can be used to achievdterlsgnal-to-noise ratiol[d)].
Sen et al. 22] proposed a multi-resolution and adaptive method to medsurM. In [10],

a deterministic stripe-scanning method was proposed toigct] where horizontal and ver-
tical stripes scan through the scene in a sequential makoefow-frequency diffuse light
sources, a fast method in Wang et &b][was introduced to take advantage of the coherenc
in the rows and columns dtLTM. Compressive sensing, which is closely related to ou
work, was also used to measurd-BTM by exploiting its sparse or compressible prop-
erty [18, 21].

2.3 Compressed sensing

Compressed sensing has opened a new frontier in sparsésagmaling and measurement.
Candéset al. and Donoho 2, 4, 11] showed that sparse signal can be reconstructed wit
much fewer measurements than what is dictated by the Ny&hiatbnon sampling the-
ory [13]. The canonical form of compressive sensing problem isrgine

(P1) min||x||o S.t.y = AX, (2)

whereA € R™" is an underdetermined measurement matrix with m, x € R" is an un-
known vector with sparse elements, gnd R™ is the measurement vector. Thgnorm in
Eqg2 measures the number of nonzero entries ilhe optimization problem (P1) in EG.is
unfortunately NP-complete. However, when the measuremairix A satisfies a condition
known as the restricted isometry property (RIB), the solution for problem (P1) can be
obtained by replacing the thlg norm with the/; norm,

(P2)  min|x||gs.t.y = AX, ©)

which can be solved with a linear program in polynomial tirdgl[1].

With compressed sensing, Peetsl. and Seret al. [18, 21] proposed to exploit sparsity
in both rows and columns of tHe.TM and compute the response of each pixel by projectin
patterned illumination. They probe the light transport mxaby m illumination conditions
L =lo,...,Im] to obtain their corresponding observati@s- [co, ..., Cm], Which is,

C=TLeCT=L"TTad=LTt], (4)

wheret! is a columninTT that represents the reflectance function ofitttepixel in the cam-
eraimage and is a column ofCT. This formulation maps directly to a compressive sensin
context whera_T fulfills the role of the measurement ensemhleand the reflectance func-
tion t{ corresponds to the discrete signalTo exploit sparsity in both rows and columns of
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compressive sensing | compressive inverse
cl
Encoding matrix| L = [lg,...,Im] Cl=:
Cn
Codes C=c1,...,Cm] LT =[L(1),...,L(N)]
Relation C=TL CTT hHr=LT
Reconstruction | min|[t/[[p s.t.c; =t/LW | min]Jhi[jo s.t. C"Wh; = Ly(i)

Table 1: A comparison with conventional compressed serfsimgework.

T, T can be further represented Bs= WI?WZ. The right transformatiokV, operates on
the rows (i.e., reflectance functions) of the transport imatr exploit the coherency within
the reflectance functions, while the left transformatih operates on the columns of the
transport matrix (i.e., photographs) to condenses the-pikel information. The resulting
doubly transforme@LTM is even sparser, and thus is potentially inferable ffemer mea-
surements at a higher accuracy.

3 Compressive Inverse

Noticing the computational cost and inaccuracy of the ttepstrategy of-LTM acqui-
sition, in this section we develop tle®mpressive inversieory which enables a one-step
acquisition ofi-LTM. Eq. 4, relating illumination and observation By, can be rewritten as:

CT(Tfl)T — LT (5)

by left multiplying T~ and take transpose on both sides.

This equation is in the form of compressed sensing by coriegle€olumns ofC as
a "sensing ensemble" and columnsLo&s "measurements/observations" in terms of com-
pressed sensing. Notice that the terminology is reversect iEonsider the problem in a
physical context wher€ are the observations from the sensing pattérnk other words,
mathematically in Eq6, we are probing the matriX—* with C where physically we are
probingT with L. To avoid this confusion, we use a coding theory terminoliogye sem-
inal work [4] to dissociate physical meanings with the conventionahteology such as
"sensing ensemble” or "measurements”. We refer the matrtk@left of our target matrix
as "encoding matrix" and the vectors comprising the matmithe right hand side as "codes".
A comparison of formulations of forward and inverse compressensing is in Tablé. As
we shall prove this in sectiof.1, (T™1)T is compressible in both rows and columns with
orthonormal basi8V (Eq. 9), substituting EQq9 into Eq. 6 and right multiplyW,

CTW(T-)T =LTw. (6)
The optimization problem for reconstructing theTM (T—1)T then becomes:

(P3)  min|hifos.t.CTWh; =Ly(i), i=1,..,N (7)

whereh; denotes thé-th column of(T-1)T, i.e. (T-1)T = [ho,...,hn], andLy(i) denotes
thei-th column ofLTW. By Eq. 9 in section3.1, successfully solving (P3) implies the
reconstruction of T~1)T. Unlike the forward case whete is in our direct controlj.e.

L can be designed as a Bernoulli ensemble which satisfies iRtfecompressive inverse
scenario, the encoding matr®' is not something we can design. Nevertheless, the prior
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knowledge that is obtained physically by the product ®fandL is known to us though
T is unknown. Now the question becomes, can we still recoasiy@ If yes, what is the
condition that guarantees the reconstruction? Fortunatslshown in sectiof.2, as long
as any of th&k-subspaces spanned Bys not contained in the null spacelof , we can still
reconstruct the inverse matrid 1)T (Lemma3.1), furthermore, if theK-submatrices of
T are well-conditioned, efficient algorithms exist for thesastruction (Theorerd.1). It is
worthy to note that, the recent paper dealing with coherietibtharies p] cannot be used for
our problem because the optimization yields the sigh&h{ = g in our case) directly. This
is inapplicable to our case where the sparse coefficienttharsought quantities. Before
we come to the main theorem for tiTM reconstruction, we investigate the following
two conditions that must be satisfied before hahdnust beinvertibleand can beparsely
represented

3.1 Invertibility of f-LTM and compressibility of i-LTM

It is common thaf-LTM T under focused light sources such as light pixels of a project
are diagonally dominarit[1, 8, 23. An example of sucli-LTM is shown in Figl(a) with
another one shown in Section 3 of the supplementary. As lsribeadimension of the illu-
mination pattern and observation are of the same dimen§i@square and invertible due
to applying Gershgorin’s circle theorem to diagonally doamit matrices. Pseudo-inverse
can be used for the non-square case but we focus on the s@saranchis work.

3.1.1 i-LTM has a sparse representation

Remark 3.1. If a matrix has sparse representation in both rows and colsimith some
orthonormal basis, its inverse can be sparsified in rows asldrans with the same basis.

This claim can be argued in two steps. By exploiting spaiisityoth rows and columns
of T, we have Eq8 .
T=wiw’ (8)
whereW denotes an orthonormal basis ahds the sparsified matrix. Similarly, we denote
T-1 as the matrix transformed by as in Eq.9.

Tt =wT-iw, 9)

A simple fact derived in§], as stated in Eq10, is that we can obtaiff -1 by taking the
inverse of the sparse representatior pthis is due to orthonomality div.

T1-F1 (10)
Now we argue thal ! is sparse due to the following. Observe thais also diagonally
dominant by comparing the diagonal and off-diagonal eleémelf the diagonal elements
of T are nonzero (which is in general true fletTM of focused light sources), we define
E:=2(T)-T andF := (2(T))"1E, whereZ(-) is a 2D operator that only retains the
diagonal elements of a matrix, the following equality holds

T=2(T)(1-F) (11)

1Light transport matrix from low-frequency diffuse lightsmes may not be diagonally dominaB6[. However,
such light transport matrix is in general highly comprelesénd low-rank. We will address the inverse of such type
of light transport in a framework similar to pseudo-inverséuture work.
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(a) (b) () (d)
Figure 1: This figure shows an example of {)TM and itsi-LTM (c) with their corre-
sponding sparsified matrices (b) and (d) by Haar wavelesbasi
from which we obtain the Neumann expansion
Tl (I +F+FP+  +FP)(2(T) (12)

(T-1HP

If Tis diagonally dominant and spardeg., the number of nonzeros of each row bfis
bounded by a small constaft? is then sparse and the entries shall decrease in valpe as
increases, as stated 84 and elaborated in7, 14]. Hence,(T~1)(P is also compressible.
Convergence of the Neumann series for forward and mvegjbemansport can be found in

[1, 16] . Now we concluded that 1 is sparse which means that 1 must be sparse, and
henceT 1 can be sparsely represented but not as sparse as the sgaesenéation of .
This conclusion is demonstrated in Hig.

3.2 Reconstruction condition fori-LTM

In this section we develop the conditions for reconstrtg:firil. Following the same devel-
opmental line in compressed sensing literature, first wabéish a necessary and sufficient
condition for the existence of a unique solution which caobiined by NP-hard programs
(with £p), followed by a theorem stating a condition under which dicieht algorithm exists
for reconstruction (with’1). Same as in Tabl&, we denotd (i) to be theith column of
themx N matrix LT W, andC to be the encoding matrix. We also ugeto denote thé-th

column of(?*\l)T. Let Sk be the set of alk-sparse vectors.

3.2.1 When does a solution exist?

Consider the problem (P3) in E@.
(P3)  minhiflos.t.CTWh; =Ly(i), i=1,..,N

whereCT is obtained physically b£" = LTTT as in Eq.4. For orthonormal matrixV,
the following lemma shows a necessary and sufficient candftr this problem to have a
unique solution.

Lemma 3.1. Given a set I {1,2,...N}, define the matriX ; as the one formed frof by

using columns from the set J. Liate S be the ith column 0¢T DT, There exist a unique
solutionh; to the minimization procedure P(3) such that= h;,
if and only if

ker(LT)NTy = {0}, {vJ||J| < 2k}

We can interpret this lemma as follows, for the minimiaeof (P3) to be the-th column
of (T-1)T, a necessary and sufficient condition is that, any oitFeubspaces spanned by
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\aj

v

Figure 2: This figure shows the trade-off between conditiombers of submatrices df
and the isometry constant of the illumination pattern The shaded region shows all the
feasible combinations a3, (T) andy; 7 (2K).

is not contained in the null space bf . Intuitively, for the transformed sensing process to
be reversible for reconstruction, the vectors inkhksubspaces of that transformation matrix
must be one-to-one under the random mapping.

3.2.2 When doed; reconstruction work?

In this section we develop a sufficient condition under wipobblem (P4) in Eq13 guar-
antees to have the same solution as problem (P3) therebiranafficient algorithms.

(P4)  min|hi|1s.t.CTWh; =Ly(i), i=1,..,N. (13)

Our theorem below is based on a careful examination of suimaatconsisting of an arbi-
trary collection ofk columns. The symbolgmax(T), omin(T), respectively denote the usual
maximum, minimum nonzero singular values of a mafrix We use the superscrigk) to
represent extremal values of the above spectral measuris fmbmatrices. For instance,
or(nké)lx(T) = sup{gmax(TJ1),V|J| =K}, i.e, the largest singular value taken overlaitolumn
submatrices of ; while org]ﬁL(T) =inf{omin(T3), V|| = k}.Before the statement of the theo-
rem, we define th®-adapted restricted isometry constant (D-RE})hich is an extension
of a ubiquitous property (RIP) assumed in the analysis ofgressed sensing. The dictio-
nary is denoted aB to comply with the notation inq], but it representd " in our case.

Definition 3.1. [5] For each integer k= 1,2, ..., define theD-adapted isometry constafg
of a matrixLT as the smallest number such that

(1—3)[Dh[|3 < |[LTDh]|3 < (1+ &)|[Dh]|3,h € Sk (14)
with D-RIP ratio 145
+
yr (k) = 15 (15)

Now we are ready to state the condition under whiicheconstruction of-LTM is valid,

Theorem 3.1. LetLT be any matrix of size m N with D-RIP ratioy; 1 (2k). Letky(T) =
Onan(T)/ O (T). i
Ka(T) -y (2k) < v2+1 (16)

Then,¢;-minimization will exactly recoven € Sy .
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This theorem states that, provided that the submatricésofeasonably well-conditioned,
we can still ensure an exact recovery of a sparséccording to Theoren3.1, we plot the
feasible region of all possible3 (T) andy; t(2k) in Fig. 2, which shows that, wheh™
has a smaller isometry constad, i.e., LT contains more random patterns, then there is
larger room fon<22k(T) to vary while still ensures reconstruction. On the contréuthe sub-
matrices ofT are well-conditionedi,e., k3 (T) — 1, we can afford an illumination pattern
LT with less rows (fewer measurements). Notice thaf, i§ canonical or orthonormal, i.e.
Kx(T) = 1, straight away we have the conditiés < v/2 — 1 which is the state-of-the-art
RIP constant derived ir8]. This also verifies that our bound in Eg6is tight.

4 Experiments

In this section, we will validate our methodieETM estimation in terms of its computational
efficiency and accuracy with real experiments on an M-shapeél scene. We will compare
our method with the conventional approach that consistwokeparate steps: forward light
transport acquisition followed by inversion. All the resuin this section have a lighting
resolution of 13x 21. Bernoulli patterns are used for the measurement mhtrixx our
experiment. Haar wavelet is used as sparsifying Basi®r both rows and columns as in
Eq.9. /1-Magic is the toolbox for solving the convex programminglgemm (P4).

2nd-bounce separation One consequence of the inverse light transport theory totiee
the light transport has been acquired, we can quickly séparaimage into the different
bounces (direct, 1stindirect bounce, 2nd indirect boundesa on). It follows from 1], that
thek-th indirect bounce is

k+1 K 1k
150 =15 = 1a— FT-1, (17)

whereF is the first-bounce light transport which can be exactly cotag for Lambertian
scenesZ(], as we do here, or approximated otherwi%€][ Thus, each successive run of
our iterative inversion algorithm yields a bounce of ligtartsport. Fig.3 shows a didactic
example demonstrating the second bounce light when lighim different panels of the
M-shaped scene, which consists of two concave V-wedgesritiates light interreflection
between the mutually facing panels. When panel 1 of the Mwsée lit, panel 2 receives
significant second-bounce light bounced off from panel 1pésel 1 is flat where any two
points on the panel see each other, the second-bounce tightribt light up panel 1 itself.
Similar phenomena are observed when panel 2, 3 and 4 anmeflitislexperiment, theLTM
used in this experiment is acquired by 170 measurements.

Comparison on accuracy We compare the accuracy of our direct reconstruction method
with the two-phase approach by calculating the relativergwhich is the difference between
the second-bounce light image (when all panels are lit) agetpusing the differentL.TM
with respect to that from the referenc&TM. The referencd-LTM we use is the exact
inverse of thd-LTM acquired by the brute-force method that measures thgomese of each
projector source element one by one. This comparison issivoWwig. 4 for two cases with
120 and 150 random measurements respectively. On the lgfe dif st row, with the-LTM
acquired by our direct method, a second bounce image of tebdyped panel scene is shown
under flood illumination. In the middle the image second lwauseparated by the reference
i-LTM is shown. On the right, a false color image map of thetiedeerror between the two
images is shown. The second row shows the correspondinigsrebtained through a two-
stage approach: tfeL.TM acquired with the compressive sensing methbg| P1] followed

by an exact inversion. It is evident that our direct methoslithigher accuracy.
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(d) (e) ®
Figure 3: Second bounce images under floodlit at differenefzaon an M-shaped panel
scene. Top row: (a)The M-shaped panel scene. (b)Seconmt:bdmage under floodlit. (c)
(d) (e) (f) are 2nd-bounce images under floodlit at paneBl42espectively.

Comp. 2nd bounce Ref. 2nd bounce Error map
Comparison upon 120 measurements

Direct:
error:0.010
o m
error:0.017
Comparison upon 150 measurements
N - -
error:0.004
o -

error:0.015

Figure 4: Quantitative comparison of the 2nd-bounces st#paifrom tha-LTM acquired
by our direct method and the two-phase method. The averageigrcomputed by taking
the sum of squared differences of the reconstruction andeffegence images, divided by
the number of pixels. The error at the corner is due to inadeqwavelet sparsification at
the ending column of the matrix, see Higd).
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Comparison on complexity The computational complexity fai, minimization over all
columns ofi-LTM is O(N?m) on average. For the two-stage method, the lower bound for
the computational complexity of the inversion of a matdix N is Q(N?logN) according

to [25]. This is the overhead in addition &g minimization. Therefore two-phase method
unnecessarily slows down the computation by a significarmiuarn

5 Conclusion and future work

In this paper, we propose a one-step sensing strategy toradha inverse light transport
matrix (-LTM) directly by developing theompressive invergbeory. This strategy reduces
both error and computational cost of acquirirRgTM. We first show thati-LTM can be
represented sparsely followed by an inverse reconstructimdition for direct acquisition
of i-LTM. The new framework implies a trade-off between two €ast condition num-
bers of submatrices ¢f{LTM and the isometry constant of the illumination patteii.TM
acquired by our method is then demonstrated with 2nd-boseparation experiments on
the M-shaped panel scene. Finally our one-$tEpM reconstruction method outperforms
the two-stage method with higher accuracy and lower conitglekhe compressive inverse
framework can also be extended to other inverse systemifidation problems. Further-
more, this work can be extended to a pseudo-inverse forianlat deal with the dimension
mismatch of illuminations and observations.

References

[1] J. Bai, M. Chandraker, T.-T. Ng, and R. Ramamoorthi. Aldheaory of inverse and forward light
transport. InProc. of European Conf. on Computer Visji@®910.

[2] E. Candés. Compressive samplingternational Congress of Mathematicigrid:1433-1452,
2006.

[3] E.Candes. The restricted isometry property and itsicagibns for compressed sensir@ompte
Rendus de I'Academie des Sciences, Paris, SgBi#6:589-592, 2008.

[4] E. Candés and T. Tao. Decoding by linear programmil§EE Transactions on Information
Theory, 51(12):4203-4215, 2005.

[5] E.Candes, Y. Eldar, D. Needell, and P. Randall. Comssnsing with coherent and redundant
dictionaries.Applied and Computational Harmonic Analys2910.

[6] T.F. Chan, W. P. Tang, and W. L. Wan. Wavelet sparse apmabe inverse preconditionerBIT
Numerical Mathematics37(3):644—-660, 1997.

[7] E. Chow. A priori sparsity patterns for parallel spargp@ximate inverse preconditioneSlAM
J. Sci. Comput.21:1804-1822, 2000.

[8] M. F. Cohen and J. R. WallaceRadiosity and Realistic Image Synthesiorgan Kaufmann
Publishers, 1993.

[9] P. Debevec, T. Hawkins, C. Tchou, H. Duiker, W. Sarokinda/l. Sagar. Acquiring the re-
flectance field of a human face. roc. of ACM SIGGRAPHyages 145-156, 2000.

[10] Y. Ding, J. Xiao, K.-H. Tan, and J. Yu. Catadioptric pgojors. InProc. of Computer Vision and
Pattern Recognition2009.



X. CHU ET AL: COMPRESSIVE INVERSE LIGHT TRANSPORT 11

(11]

(12]

(13]
(14]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

[27]

(28]

D. L. Donoho. Compressed sensintEEE Transactions on Information Theor§2(4):1289—
1306, April 2006.

H. Habe, N. Saeki, and T. Matsuyama. Inter-reflectiompensation for immersive projection
display. InProc. of Computer Vision and Pattern Recogniti@d07.

S. Haykin. Communication system$Viley, 2008.

T. Huckle. Approximate sparsity patterns for the irseeof a matrix and preconditioning\ppl.
Numer. Math 30:291-303, 1999.

R. Ng, R. Ramamoorthi, and P. Hanrahan. All-frequenicgdows using non-linear wavelet
lighting approximation ACM Transactions on Graphic22(3):376—381, 2003.

T.-T. Ng, R. S. Pahwa, J. Bai, Q.-S. Quek, and K.-H. TaradiBmetric Compensation Using
Stratified Inverses. IRroc. of Int'l Conf. on Computer Visiqr2009.

M. O’'Toole and K. Kutulakos. Optical computing for fagght transport analysis. IRroc. of
ACM SIGGRAPH ASIA010.

P. Peers, D. Mahajan, B. Lamond, A. Ghosh, W. MatusikRB&mamoorthi, and P. Debevec.
Compressive light transport sensil®CM Transactions on Graphic28(1), 2009.

Y. Y. Schechner, S. K. Nayar, and P. N. Belhumeur. Midtng for optimal lighting. IEEE
Trans. on Pattern Analysis and Machine Intelligengages 1339-1354, 2007.

S. Seitz, Y. Matsushita, and K. Kutulakos. A theory ofarse light transport. I®roc. of Int’l
Conf. on Computer Visiqipages 1440-1447, 2005.

P. Sen and S. Darabi. Compressive Dual PhotografiityROGRAPHICS Q928(2):609-618,
2009.

P. Sen, B. Chen, G. Garg, S. Marschner, M. Horowitz, Midyge and H. Lensch. Dual Photogra-
phy. ACM Transactions on Graphic24(3):745-755, 2005.

Q. O. Snell and J. L. Gustafson. Parallel hierarchidabgl illumination. InlEEE Int High
Performance Distributed Computing Synpages 12-19, 1997.

J. Tang and Y. Saad. A probing method for computing tlagidinal of the matrix inverse. Tech-
nical Report 42, University of Minnesota, 2010.

A. Tveit. On the complexity of matrix inversion. Mathatical Note, IDI, NTNU, Trondheim,
Norway, 2003.

J. Wang, Y. Dong, X. Tong, Z. Lin, and B. Guo. Kernel Nystr method for light transpordCM
Transaction on Graphi¢£28(3), 2009.

G. Wetzstein and O. Bimber. Radiometric Compensatiwough Inverse Light Transport. In
Pacific conference on computer graphics and applicatipages 391-399, 2007.

Y. Yu, P. Debevec, J. Malik, and T. Hawkins. Inverse glbiilumination: Recovering reflectance
models of real scenes from photographsPioc. of ACM SIGGRAPHyages 215-224, 1999.



