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Abstract

This paper explores the possibility of acquiring inverse light transport directly. The
current strategy of obtaining an inverse light transport matrix involves two steps: First,
acquire the forward light transport matrix (f-LTM) and then calculate the inverse of the
f-LTM. Both steps of the strategy requires considerable computational power. In addi-
tion to computational cost, the measurement error incurredat the first step inevitably
propagates to or potentially gets amplified in the matrix inversion step.

In this paper, we propose a sensing strategy that acquires the inverse light transport
matrix (i-LTM) directly, without reconstructing thef-LTM. Our direct strategy reduces
both computational error and cost of acquiringi-LTM. For that, we propose acompres-
sive inverse theory. Following the compressible property ofi-LTM, a reconstruction
condition fori-LTM is introduced. This new framework implies a trade-off between two
factors: condition numbers of submatrices off-LTM and the isometry constant of the il-
lumination pattern. Our directi-LTM reconstruction method is then demonstrated with a
2nd-bounce separation experiment on an M-shaped panel scene. Finally by quantitatively
comparing our method with the existing two-stage approach,our method shows higher
accuracy with lower complexity. The proofs of main theorem/lemma are contained in
the supplementary material. The compressive inverse theory is general and potentially
useful for wider application.

1 Introduction

A forward light transport simulates global illumination ina scene given direct lighting or
corresponding light source emission. It embodies the forward rendering process, a corner-
stone of computer graphics, which aggregates the effect of light bouncing in a scene. An
inverse light transport reverses the forward process; it enables undoing of interreflections
and separation of light bounces in a real scene [16, 20]. In all current work, an inverse light
transport matrix (i-LTM) is obtained by inverting a forward light transport matrix (f-LTM).
For a projector-camera setup [10, 16, 27], a f-LTM can easily exceed the size of 105×105.
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Acquiring such a largef-LTM can take hours or days while inverting thef-LTM requires
various forms of approximation which compromises on the accuracy of the inverse light
transport [10, 16, 27].

In this work, we propose a way of computingi-LTM directly from the measurements
without the need for a prior and explicit reconstruction of the f-LTM. We show that within
the framework ofcompressive inverse theory, i-LTM can be obtained in a similar manner as
thef-LTM without additional computational cost and aggregatederror from matrix inversion.
For simplicity, we assume a square matrix for light transport and defer the case of non-square
matrices to future work.

2 Previous Work

As this work concerns with reconstructingi-LTM directly in the compressive sensing frame-
work, the methodology is related to the prior works in inverse light transport, forward light
transport acquisition, compressive sensing, and matrix inversion. We denote thef-LTM asT
henceforth.

2.1 Inverse light transport computation

Inverse global illumination was introduced by Yuet al.[28], but with the focus on estimating
reflectance properties, rather than compensating input lighting patterns. Seitzet al. [20]
proposed a theory of inverse light transport and demonstrated light bounce separation with
inverse light transport.

Inverse light transport can be computed by inverting the forward light transport ma-
trix [10, 12, 16, 27]. In all these works, thef-LTM is first reconstructed from the mea-
surements before deriving thei-LTM from the f-LTM. In the conventional setting, the com-
putation ofi-LTM mainly involves solving the inverse problem

lout = Tl in, (1)

wherelout is the observed scene under global illumination andl in is the input light pattern.
There are two approaches for solving the inverse light transport problem in Eq.1. The first
approach solves Eq.1 as a system of linear equations [1]. Efficient methods of this approach
are the Jacobi method and the Gauss-Seidel method that involves iterative vector-matrix
multiplication. The second approach is to invert the matrixT. Matrix inversion ideally
corresponds to solving the matrix-matrix equationTT−1 = I , hence the second approach has
much higher computational complexity than the first approach. OnceT−1 is precomputed,
given a newl in, lout can be easily obtained with a single-step vector-matrix multiplication.
However, inverting a large-sizef-LTM is computational and memory intensive, hence various
forms of approximation were introduced [10, 12, 16, 27].

In contrast to this conventional procedure, our method enables inverse light transport to
be computed directly from the measurements, without the need for explicitly reconstructing
the f-LTM. By skipping the intermediate steps off-LTM reconstruction and by avoiding the
approximate light transport inversion, it is logical that our method will be more computa-
tionally efficient and accurate.

A recent work by O’Tooleet al. [17] computes the output image of an inverse light
transport in the optical domain, without explicitly computing thef-LTM or i-LTM. The work
is in the same spirit as our work in reducing computational steps. However, pre-computing
i-LTM is important when it comes to processing a video or a sequence of images. Without
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an expliciti-LTM, the implicit matrix inversion process needs to be repeated for each frame
of a video and hence incurs a high computational cost.

2.2 Forward light transport acquisition

A large body of work over the last decade in computer graphicsand computer vision has dealt
with acquiringf-LTM, indicating how a real scene responds to diffuse or focused light from
projectors [9, 10, 18, 22, 26]. While we focus here on real scenes, the use of precomputed
transport is increasingly common even for synthetic scenes, in applications like real-time
relighting [15].

The brute-force acquisition method turns on the projector pixels one by one while the
response of each projector pixel is recorded by a camera to form columns in af-LTM. Alter-
natively, Hadamard light patterns can be used to achieve a better signal-to-noise ratio [19].
Sen et al. [22] proposed a multi-resolution and adaptive method to measure f-LTM. In [ 10],
a deterministic stripe-scanning method was proposed to acquireT where horizontal and ver-
tical stripes scan through the scene in a sequential manner.For low-frequency diffuse light
sources, a fast method in Wang et al. [26] was introduced to take advantage of the coherency
in the rows and columns off-LTM. Compressive sensing, which is closely related to our
work, was also used to measure af-LTM by exploiting its sparse or compressible prop-
erty [18, 21].

2.3 Compressed sensing

Compressed sensing has opened a new frontier in sparse signal sampling and measurement.
Candéset al. and Donoho [2, 4, 11] showed that sparse signal can be reconstructed with
much fewer measurements than what is dictated by the Nyquist-Shannon sampling the-
ory [13]. The canonical form of compressive sensing problem is given by

(P1) min‖x‖0 s.t.y = Ax, (2)

whereA ∈ R
m×n is an underdetermined measurement matrix withn> m, x ∈ R

n is an un-
known vector with sparse elements, andy ∈ R

m is the measurement vector. Theℓ0 norm in
Eq.2 measures the number of nonzero entries inx. The optimization problem (P1) in Eq.2 is
unfortunately NP-complete. However, when the measurementmatrixA satisfies a condition
known as the restricted isometry property (RIP) [4], the solution for problem (P1) can be
obtained by replacing the theℓ0 norm with theℓ1 norm,

(P2) min‖x‖1 s.t.y = Ax, (3)

which can be solved with a linear program in polynomial time [2, 11].
With compressed sensing, Peerset al. and Senet al. [18, 21] proposed to exploit sparsity

in both rows and columns of thef-LTM and compute the response of each pixel by projecting
patterned illumination. They probe the light transport matrix by m illumination conditions
L = [l0, ..., lm] to obtain their corresponding observationsC = [c0, ...,cm], which is,

C = TL ⇔ CT = LTTT ⇔ c′i = LT t′i , (4)

wheret′i is a column inTT that represents the reflectance function of thei-th pixel in the cam-
era image andc′i is a column ofCT . This formulation maps directly to a compressive sensing
context whereLT fulfills the role of the measurement ensembleA, and the reflectance func-
tion t′i corresponds to the discrete signalx. To exploit sparsity in both rows and columns of
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compressive sensing compressive inverse

Encoding matrix L = [l1, ..., lm] CT =




cT
1
...

cT
m




Codes C = [c1, ...,cm] LT = [L(1), ...,L(N)]

Relation C = TL CT(T−1)T = LT

Reconstruction min‖t̂′i‖0 s.t.ci = t̂′iLW min‖hi‖0 s.t. CTWh i = Lw(i)

Table 1: A comparison with conventional compressed sensingframework.

T, T can be further represented asT = WT
1 T̂W2. The right transformationW2 operates on

the rows (i.e., reflectance functions) of the transport matrix to exploit the coherency within
the reflectance functions, while the left transformationWT

1 operates on the columns of the
transport matrix (i.e., photographs) to condenses the inter-pixel information. The resulting
doubly transformedf-LTM is even sparser, and thus is potentially inferable fromfewer mea-
surements at a higher accuracy.

3 Compressive Inverse
Noticing the computational cost and inaccuracy of the two-step strategy ofi-LTM acqui-
sition, in this section we develop thecompressive inversetheory which enables a one-step
acquisition ofi-LTM. Eq. 4, relating illumination and observation byT, can be rewritten as:

CT(T−1)T = LT (5)

by left multiplyingT−1 and take transpose on both sides.
This equation is in the form of compressed sensing by considering columns ofC as

a "sensing ensemble" and columns ofL as "measurements/observations" in terms of com-
pressed sensing. Notice that the terminology is reversed ifwe consider the problem in a
physical context whereC are the observations from the sensing patternsL . In other words,
mathematically in Eq.6, we are probing the matrixT−1 with C where physically we are
probingT with L . To avoid this confusion, we use a coding theory terminologyin the sem-
inal work [4] to dissociate physical meanings with the conventional terminology such as
"sensing ensemble" or "measurements". We refer the matrix on the left of our target matrix
as "encoding matrix" and the vectors comprising the matrix on the right hand side as "codes".
A comparison of formulations of forward and inverse compressive sensing is in Table1. As
we shall prove this in section3.1, (T−1)T is compressible in both rows and columns with
orthonormal basisW (Eq. 9), substituting Eq.9 into Eq.6 and right multiplyW,

CTW(T̂−1)T = LTW. (6)

The optimization problem for reconstructing thei-LTM (T−1)T then becomes:

(P3) min‖hi‖0 s.t. CTWh i = Lw(i), i = 1, ...,N (7)

wherehi denotes thei-th column of(T̂−1)T , i.e. (T̂−1)T = [h0, ...,hN], andLw(i) denotes
the i-th column ofLTW. By Eq. 9 in section3.1, successfully solving (P3) implies the
reconstruction of(T−1)T . Unlike the forward case whereL is in our direct control,i.e.
L can be designed as a Bernoulli ensemble which satisfies RIP, in thecompressive inverse
scenario, the encoding matrixCT is not something we can design. Nevertheless, the prior
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knowledge thatC is obtained physically by the product ofT andL is known to us though
T is unknown. Now the question becomes, can we still reconstruct hi? If yes, what is the
condition that guarantees the reconstruction? Fortunately, as shown in section3.2, as long
as any of theK-subspaces spanned byT is not contained in the null space ofLT , we can still
reconstruct the inverse matrix(T−1)T (Lemma3.1), furthermore, if theK-submatrices of
T are well-conditioned, efficient algorithms exist for the reconstruction (Theorem3.1). It is
worthy to note that, the recent paper dealing with coherent dictionaries [5] cannot be used for
our problem because the optimization yields the signal (TThi = ei in our case) directly. This
is inapplicable to our case where the sparse coefficients arethe sought quantities. Before
we come to the main theorem for thei-LTM reconstruction, we investigate the following
two conditions that must be satisfied before hand:T must beinvertibleand can besparsely
represented.

3.1 Invertibility of f-LTM and compressibility of i-LTM

It is common thatf-LTM T under focused light sources such as light pixels of a projector
are diagonally dominant1 [1, 8, 23]. An example of suchf-LTM is shown in Fig.1(a) with
another one shown in Section 3 of the supplementary. As long as the dimension of the illu-
mination pattern and observation are of the same dimension,T is square and invertible due
to applying Gershgorin’s circle theorem to diagonally dominant matrices. Pseudo-inverse
can be used for the non-square case but we focus on the square case in this work.

3.1.1 i-LTM has a sparse representation

Remark 3.1. If a matrix has sparse representation in both rows and columns with some
orthonormal basis, its inverse can be sparsified in rows and columns with the same basis.

This claim can be argued in two steps. By exploiting sparsityin both rows and columns
of T, we have Eq.8

T = WT̂WT (8)

whereW denotes an orthonormal basis andT̂ is the sparsified matrix. Similarly, we denote

T̂−1 as the matrix transformed byW as in Eq.9.

T−1 = WT̂−1WT . (9)

A simple fact derived in [6], as stated in Eq.10, is that we can obtain̂T−1 by taking the
inverse of the sparse representation ofT, this is due to orthonomality ofW.

T̂−1 = T̂−1 (10)

Now we argue that̂T−1 is sparse due to the following. Observe thatT̂ is also diagonally
dominant by comparing the diagonal and off-diagonal elements. If the diagonal elements
of T̂ are nonzero (which is in general true forf-LTM of focused light sources), we define
E := D(T̂)− T̂ andF := (D(T̂))−1E, whereD(·) is a 2D operator that only retains the
diagonal elements of a matrix, the following equality holds

T̂ = D(T̂)(I −F) (11)

1Light transport matrix from low-frequency diffuse light sources may not be diagonally dominant [26]. However,
such light transport matrix is in general highly compressible and low-rank. We will address the inverse of such type
of light transport in a framework similar to pseudo-inversein future work.
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(a) (b) (c) (d)
Figure 1: This figure shows an example of (a)f-LTM and its i-LTM (c) with their corre-
sponding sparsified matrices (b) and (d) by Haar wavelet basis.

from which we obtain the Neumann expansion

T̂−1 ≈ (I +F+F2+ ...+Fp)(D(T̂))−1

︸ ︷︷ ︸
(T̂−1)(p)

(12)

If T̂ is diagonally dominant and sparse,i.e., the number of nonzeros of each row ofT̂ is
bounded by a small constant,Fp is then sparse and the entries shall decrease in value asp
increases, as stated in [24] and elaborated in [7, 14]. Hence,(T̂−1)(p) is also compressible.
Convergence of the Neumann series for forward and inverse light transport can be found in

[1, 16] . Now we concluded that̂T−1 is sparse which means that̂T−1 must be sparse, and
henceT−1 can be sparsely represented but not as sparse as the sparse representation ofT.
This conclusion is demonstrated in Fig.1.

3.2 Reconstruction condition fori-LTM

In this section we develop the conditions for reconstructing T̂−1. Following the same devel-
opmental line in compressed sensing literature, first we establish a necessary and sufficient
condition for the existence of a unique solution which can beobtained by NP-hard programs
(with ℓ0), followed by a theorem stating a condition under which an efficient algorithm exists
for reconstruction (withℓ1). Same as in Table1, we denoteLw(i) to be theith column of
them×N matrix LTW, andC to be the encoding matrix. We also usehi to denote thei-th

column of(T̂−1)T . Let Sk be the set of allk-sparse vectors.

3.2.1 When does a solution exist?

Consider the problem (P3) in Eq.7

(P3) min‖hi‖0 s.t. CTWh i = Lw(i), i = 1, ...,N

whereCT is obtained physically byCT = LTTT as in Eq. 4. For orthonormal matrixW,
the following lemma shows a necessary and sufficient condition for this problem to have a
unique solution.

Lemma 3.1. Given a set J⊆ {1,2, ...N}, define the matrixTJ as the one formed fromT by

using columns from the set J. Lethi ∈ Sk be the ith column of(T̂−1)T . There exist a unique
solutionĥi to the minimization procedure P(3) such thatĥi = hi ,
if and only if

ker(LT)∩TJ = {0},{∀J||J| ≤ 2k}

We can interpret this lemma as follows, for the minimizerĥi of (P3) to be thei-th column

of (T̂−1)T , a necessary and sufficient condition is that, any of theK-subspaces spanned byT
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Figure 2: This figure shows the trade-off between condition numbers of submatrices ofT
and the isometry constant of the illumination patternLT . The shaded region shows all the
feasible combinations ofκ2

2k(T) andγLT (2k).

is not contained in the null space ofLT . Intuitively, for the transformed sensing process to
be reversible for reconstruction, the vectors in theK-subspaces of that transformation matrix
must be one-to-one under the random mapping.

3.2.2 When doesℓ1 reconstruction work?

In this section we develop a sufficient condition under whichproblem (P4) in Eq.13 guar-
antees to have the same solution as problem (P3) thereby enabling efficient algorithms.

(P4) min‖hi‖1 s.t. CTWh i = Lw(i), i = 1, ...,N. (13)

Our theorem below is based on a careful examination of submatrices consisting of an arbi-
trary collection ofk columns. The symbolsσmax(T), σmin(T), respectively denote the usual
maximum, minimum nonzero singular values of a matrixT . We use the superscript(k) to
represent extremal values of the above spectral measures for its submatrices. For instance,

σ (k)
max(T) = sup{σmax(TJ),∀|J| = k}, i.e., the largest singular value taken over allk-column

submatrices ofT; while σ (k)
min(T) = inf{σmin(TJ),∀|J|= k}.Before the statement of the theo-

rem, we define theD-adapted restricted isometry constant (D-RIP) [5], which is an extension
of a ubiquitous property (RIP) assumed in the analysis of compressed sensing. The dictio-
nary is denoted asD to comply with the notation in [5], but it representsTT in our case.

Definition 3.1. [5] For each integer k= 1,2, ..., define theD-adapted isometry constantδk

of a matrixLT as the smallest number such that

(1− δk)‖Dh‖2
2 ≤ ‖LTDh‖2

2 ≤ (1+ δk)‖Dh‖2
2,∀h ∈ Sk (14)

with D-RIP ratio

γLT (k) =
1+ δk

1− δk
(15)

Now we are ready to state the condition under whichℓ1 reconstruction ofi-LTM is valid,

Theorem 3.1. Let LT be any matrix of size m×N with D-RIP ratioγLT (2k). Let κk(T) =

σ (k)
max(T)/σ (k)

min(T), if
κ2

2k(T) · γLT (2k)<
√

2+1 (16)

Then,ℓ1-minimization will exactly recoverh ∈ Sk .
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This theorem states that, provided that the submatrices ofT is reasonably well-conditioned,
we can still ensure an exact recovery of a sparseh. According to Theorem3.1, we plot the
feasible region of all possibleκ2

2k(T) and γLT (2k) in Fig. 2, which shows that, whenLT

has a smaller isometry constantδ2k, i.e., LT contains more random patterns, then there is
larger room forκ2

2k(T) to vary while still ensures reconstruction. On the contrary, if the sub-
matrices ofT are well-conditioned,i.e., κ2

2k(T) → 1, we can afford an illumination pattern
LT with less rows (fewer measurements). Notice that, IfT is canonical or orthonormal, i.e.
κ2k(T) = 1, straight away we have the conditionδ2k <

√
2−1 which is the state-of-the-art

RIP constant derived in [3]. This also verifies that our bound in Eq.16 is tight.

4 Experiments

In this section, we will validate our method ofi-LTM estimation in terms of its computational
efficiency and accuracy with real experiments on an M-shapedpanel scene. We will compare
our method with the conventional approach that consists of two separate steps: forward light
transport acquisition followed by inversion. All the results in this section have a lighting
resolution of 13× 21. Bernoulli patterns are used for the measurement matrixL in our
experiment. Haar wavelet is used as sparsifying basisW for both rows and columns as in
Eq.9. ℓ1-Magic is the toolbox for solving the convex programming problem (P4).

2nd-bounce separation One consequence of the inverse light transport theory is that once
the light transport has been acquired, we can quickly separate an image into the different
bounces (direct, 1st indirect bounce, 2nd indirect bounce and so on). It follows from [1], that
thek-th indirect bounce is

l(k+1)
out − l(k)out = ld −FT−1l(k)out, (17)

whereF is the first-bounce light transport which can be exactly computed for Lambertian
scenes [20], as we do here, or approximated otherwise [16]. Thus, each successive run of
our iterative inversion algorithm yields a bounce of light transport. Fig.3 shows a didactic
example demonstrating the second bounce light when lighting up different panels of the
M-shaped scene, which consists of two concave V-wedges thatinduces light interreflection
between the mutually facing panels. When panel 1 of the M-scene is lit, panel 2 receives
significant second-bounce light bounced off from panel 1. Aspanel 1 is flat where any two
points on the panel see each other, the second-bounce light does not light up panel 1 itself.
Similar phenomena are observed when panel 2, 3 and 4 are lit. In this experiment, thei-LTM
used in this experiment is acquired by 170 measurements.

Comparison on accuracy We compare the accuracy of our direct reconstruction method
with the two-phase approach by calculating the relative error, which is the difference between
the second-bounce light image (when all panels are lit) computed using the differenti-LTM
with respect to that from the referencei-LTM. The referencei-LTM we use is the exact
inverse of thef-LTM acquired by the brute-force method that measures the response of each
projector source element one by one. This comparison is shown in Fig. 4 for two cases with
120 and 150 random measurements respectively. On the left ofthe first row, with thei-LTM
acquired by our direct method, a second bounce image of the M-shaped panel scene is shown
under flood illumination. In the middle the image second bounce separated by the reference
i-LTM is shown. On the right, a false color image map of the relative error between the two
images is shown. The second row shows the corresponding results obtained through a two-
stage approach: thef-LTM acquired with the compressive sensing method [18, 21] followed
by an exact inversion. It is evident that our direct method has higher accuracy.
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1 42 3

(a) (b) (c)

(d) (e) (f)
Figure 3: Second bounce images under floodlit at different panels on an M-shaped panel
scene. Top row: (a)The M-shaped panel scene. (b)Second-bounce image under floodlit. (c)
(d) (e) (f) are 2nd-bounce images under floodlit at panel 1,2,3,4 respectively.

Comp. 2nd bounce Ref. 2nd bounce Error map
Comparison upon 120 measurements

Direct:

error:0.010
Two-stage:

error:0.017
Comparison upon 150 measurements

Direct:

error:0.004
Two-stage:

error:0.015
Figure 4: Quantitative comparison of the 2nd-bounces separated from thei-LTM acquired
by our direct method and the two-phase method. The average error is computed by taking
the sum of squared differences of the reconstruction and thereference images, divided by
the number of pixels. The error at the corner is due to inadequate wavelet sparsification at
the ending column of the matrix, see Fig.1(d).
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Comparison on complexity The computational complexity forℓ1 minimization over all
columns ofi-LTM is O(N2m) on average. For the two-stage method, the lower bound for
the computational complexity of the inversion of a matrixN×N is Ω(N2 logN) according
to [25]. This is the overhead in addition toℓ1 minimization. Therefore two-phase method
unnecessarily slows down the computation by a significant amount.

5 Conclusion and future work

In this paper, we propose a one-step sensing strategy to acquire the inverse light transport
matrix (i-LTM) directly by developing thecompressive inversetheory. This strategy reduces
both error and computational cost of acquiringi-LTM. We first show thati-LTM can be
represented sparsely followed by an inverse reconstruction condition for direct acquisition
of i-LTM. The new framework implies a trade-off between two factors: condition num-
bers of submatrices off-LTM and the isometry constant of the illumination pattern.i-LTM
acquired by our method is then demonstrated with 2nd-bounceseparation experiments on
the M-shaped panel scene. Finally our one-stepi-LTM reconstruction method outperforms
the two-stage method with higher accuracy and lower complexity. Thecompressive inverse
framework can also be extended to other inverse system identification problems. Further-
more, this work can be extended to a pseudo-inverse formulation to deal with the dimension
mismatch of illuminations and observations.
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