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1 Lemma 3.1 (ℓ0)

In this section, we shall prove that, in the backward problem, B must satisfy exactly the same condition as that in the
forward problem, i.e, the null space property.
Let Σk be the set of allk-sparse vectors. We denoteAj to be thejth column of then × N measurement matrix
A, andB = AQ to be the observation matrix. We also useuj to denote thejth column ofQ−1, formally, Q−1 =
[u1, u2, ..., uj , ..., uN ]. Consider the problem,

P−1
0 (j) : min ‖x‖0 subject to Bx = Aj (1)

We denote the minimizer of this problem asx̂j implying its dependence onAj . We will show that, for the minimizer
x̂j of P−1

0 (j) to be thejth column ofQ−1, a necessary and sufficient condition is forB to satisfy the null space
property, i.e.ker(B) ∩ Σ2k = {0}.

Lemma 1.1. Letuj ∈ Σk be thejth column ofQ−1. There exist a unique solution̂xj to the minimization procedure
P−1

0 (j) such that̂xj = uj,
if and only if

ker(B) ∩ Σ2k = {0}
Proof. “if”:
We notice the fact that,uj ∈ Σk is a solution to the equationBx = Aj , i.e,

Buj = BQ−1ej = AQQ−1ej = Aej = Aj (2)

Suppose there exist another solutionx̂j ∈ Σk\{uj} satisfiesBx = Aj , i.e,

Bx̂j = Aj = Buj ⇔ B(x̂j − uj) = 0 (3)

We denote∆yj = x̂j − uj ∈ Σ2k. On the other hand, Eqn?? implies∆yj ∈ ker(B), therefore,

∆yj ∈ ker(B) ∩ Σ2k

Sinceker(B) ∩ Σ2k = {0}, we have,
∆yj = 0 ⇔ x̂j = uj

“only if”:
Sinceuj ∈ Σk is a solution toBx = Aj as noticed in Eqn??, the uniqueness of solution toP−1

0 (j) states that,

∀x̂j ∈ Σk\uj, Bx̂j 6= Buj

∀x̂j ∈ Σk\uj, B(x̂j − uj) 6= 0 (4)

Set∆yj = x̂j − uj ∈ Σ2k\{0}, Eqn?? is equivalent to say,

∀∆yj ∈ Σ2k\{0}, ∆yj ∈ ker(B)

This is equivalent to,
ker(B) ∩ Σ2k = {0}

The null space property is very intuitive, it says that, for all non-2k-sparse signals,B has to take them to0, so that
for the non-zero compressions on the right hand side, there must be some sparse vector corresponds to it.
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1.1 Theoretical conditions (ℓ0)

Lemma?? in section?? establishes an equivalent condition in observation matrixB. This enables us to concentrate
our study onB = AQ. We shall soon see its relationships with theRIP as well asIncoherence in later sections.
Our primary goal in this section is to develop analytical basics for establishing condition onA andQ. We introduce
a necessary and sufficient condition relating the Gram Matrix Bt

T BT and the null space property in this section and
develop the extended null space property underB = AQ. Note that all statements in this section dictates what
is theoretically possible and does not concern practical implementations. The null space property and extended null
space property are not easy to check if given specific matrices. We do not worry about practicality of l1-implementation
at the current stage, so now we have more freedom.

1.2 Gram matrix Bt

T
BT

Lemma 1.2. Given a setT ⊆ {1, 2, ...N}, we define the matrixBT as the one formed fromB by using columns from
the setT . All eigenvalues of the Gram matrixBt

T BT are positive for all{T ||T | ≤ 2k} if and only ifker(B) ∩ Σ2k =
{0}

Proof. For any setT , sinceBt
T BT is square, we are able to define|T | eigen-pairs{(λi, yi)}i=1:|T | with all eigenvalues

of Bt
T BT non-negative because for any eigen-pair(λi, yi), we have

λi =
yt

iB
t
T BT yi

yt
iyi

=
‖BT yi‖2

2

‖yi‖2
2

≥ 0 (5)

On the other hand, for anyx ∈ Σ2k with xT be the vector that has non-zero supportT .We have,x /∈ ker(B), i.e.
Bx = BT xT 6= 0. Isolate out the elements on supportT ,we have

BT xT 6= 0, ∀xT 6= 0

Combine with Eqn??, we can prove that,{λi}i=1:|T | > 0 for all {T ||T | ≤ 2k}.

We can state other equivalent conditions to Lemma??: SincexT = 0 is the only solution to the over-determined
system:BT xT = 0, therefore the columns ofBT are linearly independent, which means that the dimension ofthe
column space ofBT is |T |. Also, If we writeBT in a SVD form, we can easily observe thatBT andBt

T BT have the
same number of non-zero singular values which isT . Since the dimension ofBt

T BT is T × T , we have thatBt
T BT

is square, full rank, and invertible, and again we emphasizethat, these are allnecessary and sufficientconditions for
Q−1 to be reconstructible. Expand onB = AQ, we haveBT = AQT andBt

T BT = Qt
T AtAQT . If matrix A is

approximate orthogonal,AtA ∼ I, then the condition requires thatQt
T QT is approximately identity.

1.3 Extended null-space property (ℓ0)

Proposition 1.1. If A is m × n andQ is n × p, then

rank(AQ) = rank(Q) − dim(ker(A) ∩ Range(Q)). (6)

Lemma 1.3. Suppose an × |T | matrix BT with full column rank is a multiplication of an × N matrix A and a
N × |T | matrixQT with

2|T | ≤ n < N

Then
ker(A) ∩ Range(QT ) = {0}

Proof. Since the columns ofBT to be linearly independent, this means that

rank(BT ) = rank(AQT ) = |T |

Sincerank(QT ) ≤ |T | = min(|T |, N) anddim(ker(A) ∩ Range(QT )) ≥ 0, by Proposition??, we must have

rank(QT ) = |T | and dim(ker(A) ∩ Range(QT )) = 0
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Since in our caseQ is invertible and thusrank(QT ) = |T |, for |T |-sparse vectors to be reconstructible, the sufficient
and necessary condition is

ker(A) ∩ Range(QT ) = {0}, ∀T

This means for all|T |-dimensional subspaces spanned by columns of matrixQ, A should not take vectors in those
subspaces to zero.
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2 Theorem 3.1

2.1 Linear mapping transforms Concentration Inequality

Proposition 2.1. (Concentration inequality, a.k.a Norm preservation) Letx ∈ R
N . For n × N random matricesA

whose entries are independent Gaussian random variables,

Ai,j ∼ N (0,
1

n
)

or Bernouli random variables,

Ai,j :=

{

+1/
√

n with probability 1/2
−1/

√
n with probability 1/2

Then
Pr(|‖Ax′‖2

2 − ‖x′‖2| ≥ ǫ‖x′‖2) ≤ 2e−nc(ǫ), 0 < ǫ < 1 (7)

wherec(ǫ) = ǫ2/4 − ǫ3/6.

If we let x′ = Qx, immediately we have

Corollary 2.1. Letx ∈ R
N . For n×N random matricesA whose entries are independent Gaussian random variables,

Ai,j ∼ N (0,
1

n
)

or Bernouli random variables,

Ai,j :=

{

+1/
√

n with probability 1/2
−1/

√
n with probability 1/2

Then
Pr(|‖AQx‖2

2 − ‖Qx‖2| ≥ ǫ‖Qx‖2) ≤ 2e−nc(ǫ), 0 < ǫ < 1 (8)

wherec(ǫ) = ǫ2/4 − ǫ3/6.
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2.2 Covering Numbers - BridgingRIP and Concentration Inequality

Lemma 2.1. (Covering numbers) IfS is the unit sphere ofRN relative to an arbitrary norm‖ · ‖, then there exists a
setU ∈ S with

∀z ∈ S, min
u∈U

‖z − u‖ ≤ ξ, and |U| ≤
(

1 +
2

ξ

)N

(9)

Proof. Let {u1, ..., uh} ⊆ S be a set ofh points on the sphereS such that‖ui − uj‖ > ξ for all i 6= j. We are able to
chooseh as large as possible because ash increases, we can choose smallerξ. Therefore, we can always find a set of
U to ensure the following is true,

∀z ∈ S, min
i∈[1:h]

‖z − ui‖ ≤ ξ

Let B be the unit ball ofRN endowed with the norm‖ · ‖, i.e. {B : ∀v, ‖v‖ ≤ 1}. Since‖ui − uj‖ > ξ, ∀i 6= j, we
must have

[ui +
ξ

2
B]
⋂

[uj +
ξ

2
B] = ∅, ∀i 6= j

The above can also be obtained by a proof-by-contradiction argument. Also we have

ui +
ξ

2
B ⊆

(

1 +
ξ

2

)

B, ∀i

becauseui ∈ S is on the unit sphere ofRN , for anyz ∈ B, we have

‖ui +
ξ

2
z − 0‖ ≤ ‖ui‖ +

ξ

2
‖z‖ ≤ 1 +

ξ

2

Now we add-up the volume of all the ballsui + ξ
2B, by the inclusion argument from above, we get the inequality

hΩ(
ξ

2
B) =

h
∑

i=1

Ω(ui +
ξ

2
B) ≤ Ω

(

(1 +
ξ

2
)B
)

Then by theN -homogeneity of volume

h

(

ξ

2

)N

Ω(B) ≤
(

1 +
ξ

2

)N

Ω (B)

automatically

h ≤
(

1 +
2

ξ

)N

Corollary 2.2. If S is the unit sphere ofRN relative to Euclidean norm‖ · ‖2, then there exists a setU ⊆ S with

∀z ∈ S, min
u∈U

‖Qz − Qu‖2 ≤ ξ, and |U| ≤
(

1 +
2σQ

ξ

)N

(10)

Or equivalently,

∀z ∈ S, min
u∈U

‖Qz − Qu‖2 ≤ σQξ′, and |U| ≤
(

1 +
2

ξ′

)N

(11)

Proof. Let {u1, ..., uh} ⊆ S be a set ofh points on the sphereS such that‖ui − uj‖2 > ξ′ for all i 6= j. As stated in
Lemma??, we can always find a setU to ensure the following is true,

∀z ∈ S, min
u∈U

‖z − u‖2 ≤ ξ′, and |U| ≤
(

1 +
2

ξ′

)N

(12)
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which means that we can always find a setU to ensure that the following is true

∀z ∈ S, min
u∈U

‖Qz − Qu‖2 ≤ σQξ′, and |U| ≤
(

1 +
2

ξ′

)N

(13)

this is because the following is always true:

‖Q(z − u)‖2 ≤ σQ‖(z − u)‖2

setξ = σQξ′, we have

∀z ∈ S, min
u∈U

‖Qz − Qu‖2 ≤ ξ, and |U| ≤
(

1 +
2σQ

ξ

)N

(14)

Corollary 2.3. LetK be a fixed index set of cardinality|K| = k. If SΣK
is the unit sphere ofΣK relative to Euclidean

norm‖ · ‖2, then there exists a setU ⊆ SΣK
with

∀z ∈ SΣK
, min

u∈U
‖Qz − Qu‖2 ≤ ξ, and |U| ≤

(

1 +
2σQ

ξ

)k

(15)

or equivalently

∀z ∈ SΣK
, min

u∈U
‖QKz − QKu‖2 ≤ ξ, and |U| ≤

(

1 +
2σQK

ξ

)k

(16)

whereQK is the sub-matrix ofQ by picking its columns whose indices are in the setK.

Lemma 2.2. Let A be a random matrix of sizen × N drawn according to any distribution that satisfies the concen-
tration inequality ??. Then, for any setK with |K| = k and any0 < δ < 1, we have

(1 − δ)‖Qx‖2 ≤ ‖AQx‖2 ≤ (1 − δ)‖Qx‖2, ∀x ∈ ΣK (17)

with probability

≥ 1 − 2

(

1 +
16 + 10δ

3δ
κ(QK)

)k

e−nc(δ/4) (18)

whereκ(QK) =
σQK

σQKmin

Proof. SinceA satisfies the concentration inequality??, it must also satisfy the transformed concentration inequality
by Corollary??. We denoteEi as the event such that|‖AQui‖2

2 − ‖Qui‖2
2| > δ

4‖Qui‖2
2 for eachui . We apply the

transformed concentration inequality withǫ = δ/4 and apply Boole’s inequality to bound the “bad” events

Pr(∃ui, s.t, |‖AQui‖2
2 − ‖Qui‖2

2| >
δ

4
‖Qui‖2

2) ≤
∑

ui∈U

Pr(|‖AQui‖2
2 − ‖Qui‖2

2| >
δ

4
‖Qui‖2

2) ≤ 2|U|e−nc( δ
4
)

≤ 2

(

1 +
2σQK

ξ

)k

e−nc( δ
4
)

Now suppose that the draw of matrixA gives

|‖AQui‖2
2 − ‖Qui‖2

2| ≤
δ

4
‖Qui‖2

2 ⇔ (1 − δ

4
)‖Qui‖2

2 ≤ ‖AQui‖2
2 ≤ (1 +

δ

4
)‖Qui‖2

2, ∀ui ∈ U

Which implies that

(1 − δ

4
)‖Qui‖2 ≤ ‖AQui‖2 ≤ (1 +

δ

4
)‖Qui‖2, ∀ui ∈ U
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because
√

1 − δ
4 > 1 − δ

4 and
√

1 + δ
4 < 1 + δ

4 .

Considerδ′ to be the smallest number such that

‖AQx‖2 ≤ (1 + δ′)‖Qx‖2, ∀x ∈ ΣK

Givenx ∈ ΣK with ‖x‖2 = 1, we can find aui ∈ U ⊆ SΣK
such that

‖Qx − Qui‖2 ≤ ξ =
3δ

8 + 5δ
σQKmin

By triangular inequality,

|‖Qui‖2 − ‖Qx‖2| ≤ ‖Qx − Qui‖2 ≤ ξ ⇒ ‖Qx‖2 − ξ ≤ ‖Qui‖2 ≤ ‖Qx‖2 + ξ

So that

‖AQx‖2 ≤ ‖AQui‖2 + ‖A(Qx − Qui)‖2 ≤
(

1 +
δ

4

)

‖Qui‖2 + (1 + δ′)‖Qx − Qui‖2

≤
(

1 +
δ

4

)

(‖Qx‖2 + ξ) + (1 + δ′)ξ

Sinceδ′ to be the smallest number such that

‖AQx‖2 ≤ (1 + δ′)‖Qx‖2, ∀x ∈ ΣK

So for anyx ∈ ΣK we have

(1 + δ′)‖Qx‖2 ≤
(

1 +
δ

4

)

(‖Qx‖2 + ξ) + (1 + δ′)ξ ⇔ (δ′ − δ

4
)‖Qx‖2 ≤

(

1 +
δ

4
+ (1 + δ′)

)

ξ

≤
(

2 +
δ

4
+ δ′

)

3δ

8 + 5δ
σQKmin ≤

(

2 +
δ

4
+ δ′

)

3δ

8 + 5δ
‖Qx‖2

The last inequality holds because‖x‖2 = 1. So we have

(1 + δ′) ≤
(

2 +
δ

4
+ δ′

)

3δ

8 + 5δ

A bit of algebra we can getδ′ ≤ δ, which means the following is always true

‖AQx‖2 ≤ (1 + δ)‖Qx‖2, ∀x ∈ ΣK (19)

Now we consider the left hand side

‖AQx‖2 ≥ ‖AQui‖2 − ‖A(Qx − Qui)‖2 ≥
(

1 − δ

4

)

‖Qui‖2 − (1 + δ′)‖Qx − Qui‖2

≥
(

1 − δ

4

)

(‖Qx‖2 − ξ) − (1 + δ′)ξ =

(

1 − δ

4

)

‖Qx‖2 − ξ

(

1 − δ

4
+ (1 + δ′)

)

the last inequality is because of the fact that‖Qx‖2 − ξ ≤ ‖Qui‖2 ≤ ‖Qx‖2 + ξ. we continue,

‖AQx‖2 ≥
(

1 − δ

4

)

‖Qx‖2 − ξ

(

1 − δ

4
+ (1 + δ′)

)

=

(

1 − δ

4

)

‖Qx‖2 −
3δ

8 + 5δ
σQKmin

(

2 − δ

4
+ δ′

)

≥
(

1 − δ

4

)

‖Qx‖2 −
3δ

8 + 5δ
‖Qx‖2

(

2 − δ

4
+ δ′

)

≥
(

1 − δ

4

)

‖Qx‖2 −
3δ

8 + 5δ
‖Qx‖2

(

2 − δ

4
+ δ

)
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because of the fact thatδ′ ≤ δ. We continue

‖AQx‖2 ≥
[(

1 − δ

4

)

− 3δ

8 + 5δ

(

2 +
3δ

4

)]

‖Qx‖2 ≥
[(

1 − δ

4

)

− 3δ

4

(

8 + 3δ

8 + 5δ

)]

‖Qx‖2

≥ (1 − δ)‖Qx‖2

which means that
(1 − δ)‖Qx‖2 ≤ ‖AQx‖2 ≤ (1 + δ)‖Qx‖2, ∀x ∈ ΣK (20)

Theorem 2.1. Suppose the matrixA satisfies concentration inequality??. Then for any0 < δ < 1 and n >
c1k ln

(

eN
k

)

, there exist constantsc(δ), c1(κQk
, δ) such that

Pr(|‖AQx‖2 − ‖Qx‖2| > δ‖Qx‖2) ≤ 2e−c(δ/4)(n−c1k ln(eN/k))

where

c1 =
1 + ln

(

1 + 16+10δ
3δ κ(Qk)

)

c(δ/4)

Proof. For eachk-dimensional subspaceΣK , AQ will fail to satisfy Eqn??with probability

≤ 2

(

1 +
16 + 10δ

3δ
κ(QK)

)k

e−nc(δ/4) ≤ 2

(

1 +
16 + 10δ

3δ
κ(Qk)

)k

e−nc(δ/4)

whereκ(Qk) is the largest condition number of all possible sub-matricesQK . Now we allow the subsetK to vary,

Pr(∃x ∈ Σk, s.t, |‖AQx‖2 − ‖Qx‖2| > δ‖Qx‖2) ≤
∑

ΣK⊆Σk

Pr(|‖AQx‖2 − ‖Qx‖2| > δ‖Qx‖2)

≤
(

N

k

)

· 2
(

1 +
16 + 10δ

3δ
κ(Qk)

)k

e−nc(δ/4) ≤ 2

(

eN

k

)k (

1 +
16 + 10δ

3δ
κ(Qk)

)k

e−nc(δ/4)

= 2e−nc(δ/4)+k[ln( eN
k )+ln(1+ 16+10δ

3δ
κ(Qk))] ≤ 2e−nc(δ/4)+k ln( eN

k )[1+ln(1+ 16+10δ
3δ

κ(Qk))]

To ensure this value is small, we must impose

−nc(δ/4) + k ln

(

eN

k

)[

1 + ln

(

1 +
16 + 10δ

3δ
κ(Qk)

)]

< 0

Therefore,

n > c1k ln

(

eN

k

)

where

c1 =
1 + ln

(

1 + 16+10δ
3δ κ(Qk)

)

c(δ/4)
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2.3 Transformed Isometry Property

Definition 2.1. For each integerk = 1, 2, ..., define the isometry constantδk of a matrixB = AQ as the smallest
number such that

(1 − δk)‖Qx‖2
2 ≤ ‖AQx‖2

2 ≤ (1 + δk)‖Qx‖2
2, ∀x ∈ Σk (21)

Note that conventionalRIP is not equivalent toTIP , Qx is not a sparse vector inTIP so that we cannot let
y = Qx and useRIP directly. TIP holds if A satisfies concentration inequality with constantδk thus satisfies RIP
with constantδk. From the above definition,we can deduce thetransformed approximate orthogonality.

Lemma 2.3. Denoteσmax
QT

⋃

T ′
andσmin

QT
⋃

T ′
to be the maximum and minimum singular values ofQT

⋃

T ′ . We have

|〈AQx, AQx′〉| ≤ ηT,T ′‖x‖2‖x′‖2

where

ηT,T ′ =
σ

2(max)
QT

⋃

T ′
− σ

2(min)
QT

⋃

T ′
+ δk+k′ (σ

2(max)
QT

⋃

T ′
+ σ

2(min)
QT

⋃

T ′
)

2

for all x, x′ supported on disjoint subsetsT, T ′ ⊆ 1, ..., N with |T | ≤ k, |T ′| ≤ k′.

Proof. Let r andr′ to be unit vectors such thatx = r‖x‖2 andx′ = r′‖x′‖2, we have

|〈AQx, AQx′〉| = |〈AQr, AQr′〉| · ‖x‖2‖x′‖2

Now we bound|〈AQr, AQr′〉|. By transformed isometry property,∀r, r′ ∈ Σk

(1 − δk+k′)‖Q(r + r′)‖2
2 ≤ ‖AQ(r + r′)‖2

2 ≤ (1 + δk+k′ )‖Q(r + r′)‖2
2

(1 − δk+k′)‖Q(r − r′)‖2
2 ≤ ‖AQ(r − r′)‖2

2 ≤ (1 + δk+k′ )‖Q(r − r′)‖2
2

Supposer is supported onT andr′ is supported onT ′,

(1 − δk+k′)‖QT
⋃

T ′(r + r′)‖2
2 ≤ ‖AQ(r + r′)‖2

2 ≤ (1 + δk+k′ )‖QT
⋃

T ′(r + r′)‖2
2

(1 − δk+k′)‖QT
⋃

T ′(r − r′)‖2
2 ≤ ‖AQ(r − r′)‖2

2 ≤ (1 + δk+k′ )‖QT
⋃

T ′(r − r′)‖2
2

As r andr′ are disjoint unit vectors,
√

2σmin
QT

⋃

T ′
= σmin

QT
⋃

T ′
‖r ± r′‖2 ≤ ‖QT

⋃

T ′(r ± r′)‖2 ≤ σmax
QT

⋃

T ′
‖r ± r′‖2 =

√
2σmax

QT
⋃

T ′

So we have,
2(1 − δk+k′ )σ

2(min)
QT

⋃

T ′
≤ ‖AQ(r ± r′)‖2

2 ≤ 2(1 + δk+k′ )σ
2(max)
QT

⋃

T ′

By parallelogram identity,

|〈AQr, AQr′〉| ≤ 1

4
|2(1+δk+k′)σ

2(max)
QT

⋃

T ′
−2(1−δk+k′)σ

2(min)
QT

⋃

T ′
| =

1

2
[σ

2(max)
QT

⋃

T ′
−σ

2(min)
QT

⋃

T ′
+δk+k′(σ

2(max)
QT

⋃

T ′
+σ

2(min)
QT

⋃

T ′
)]

Therefore we have,

|〈AQx, AQx′〉| =
‖x‖2‖x′‖2

2
[σ

2(max)
QT

⋃

T ′
− σ

2(min)
QT

⋃

T ′
+ δk+k′ (σ

2(max)
QT

⋃

T ′
+ σ

2(min)
QT

⋃

T ′
)] = ηT,T ′‖x‖2‖x′‖2

If we defineσmax
Qk+k′

∈ sup{σmax
QT

⋃

T ′
, ∀T, T ′} andσmin

Qk+k′
∈ inf{σmin

QT
⋃

T ′
, ∀T, T ′}, we have

ηT,T ′ ≤ ηk+k′ =
σ

2(max)
Qk+k′

− σ
2(min)
Qk+k′

+ δk+k′ (σ
2(max)
Qk+k′

+ σ
2(min)
Qk+k′

)

2
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2.4 TIP and Null-Space Property inℓ1

Lemma 2.4. LetB = AQ be any matrix which satisfiesTIP of order2k with

(

σmax
Q2k

σmin
Q2k

)2

· 1 + δ2k

1 − δ2k
<

√
2 + 1

whereσmax
Q2k

= sup{σmax
QT

⋃

T ′
, ∀|T | = |T ′| = k} andσmin

Q2k
= inf{σmin

QT
⋃

T ′
, |T | = |T ′| = k}. ThenB satisfy the null

space property inℓ1.

Proof. Let v ∈ ker(B) and letT0 be indices of the largestk entries ofv, T1 be indices of the next largestk entries of
v, and so on. The last setTs may have less thank elements. So we have

v = vT0
+ vT1

+ ... + vTj
+ ... + vTs

Sincev ∈ ker(B), we have,

BvT0

⋃

T1
= −B(vT2

+ ... + vTj
+ ... + vTs

) = −B

s
∑

j≥2

vTj

We now bound‖vT0

⋃

T1
‖2 by substituting the above equality,

‖BvT0

⋃

T1
‖2
2 = |〈BvT0

⋃

T1
, B

s
∑

j≥2

vTj
〉| =

s
∑

j≥2

(|〈BvT0
, BvTj

〉| + |〈BvT1
, BvTj

〉|)

≤
s
∑

j≥2

(ηT0,Tj
‖vT0

‖2‖vTj
‖2 + ηT1,Tj

‖vT1
‖2‖vTj

‖2) ≤ η2k(‖vT0
‖2 + ‖vT1

‖2)

s
∑

j≥2

‖vTj
‖2

≤ η2k(‖vT0
‖2 + ‖vT1

‖2)

s
∑

j≥2

‖vTj
‖2 ≤

√
2η2k‖vT0

⋃

T1
‖2

s
∑

j≥2

‖vTj
‖2

We used the transformed approximate orthogonality proved in the previous section and the fact that‖vT0
‖2+‖vT1

‖2 ≤√
2‖vT0

⋃

T1
‖2. Now we use the left hand side ofTIP ,

(1 − δ2k)σ
2(min)
Q2k

‖vT0

⋃

T1
‖2
2 ≤ (1 − δ2k)σ

2(min)
QT0

⋃

T1

‖vT0

⋃

T1
‖2
2 ≤ ‖BvT0

⋃

T1
‖2
2 ≤

√
2η2k‖vT0

⋃

T1
‖2

s
∑

j≥2

‖vTj
‖2

Divide the inequality by‖vT0

⋃

T1
‖2,

(1 − δ2k)σ
2(min)
Q2k

‖vT0

⋃

T1
‖2 ≤

√
2η2k

s
∑

j≥2

‖vTj
‖2 (22)

Now we try to bound
∑s

j≥2 ‖vTj
‖2 by ‖vT c

0
‖1 so that null space property inℓ1 can be established. It is intuitively true

by norm equivalence, but we still want to achieve the tightest bound. For anyi ∈ Tj andl ∈ Tj−1, we have scalars

|vi| ≤ |vl|, so that,|vi| = k|vi|
k ≤ ‖vTj−1

‖1

k . Therefore by norm equivalence,

‖vTj
‖2 ≤

√
k‖vTj

‖∞ ≤
√

k
‖vTj−1

‖1

k
=

‖vTj−1
‖1√

k

So we have,
s
∑

j≥2

‖vTj
‖2 ≤

s
∑

j≥1

‖vTj
‖1√
k

=
1√
k
‖vT c

0
‖1
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substitute the above inequality into inequality??,

‖vT0

⋃

T1
‖2 ≤

√
2η2k‖vT c

0
‖1√

k(1 − δ2k)σ
2(min)
Q2k

(23)

Since‖vT0
‖1 ≤

√
k‖vT0

‖2 ≤
√

k‖vT0

⋃

T1
‖2, we have,

‖vT0
‖1 ≤

√
2η2k‖vT c

0
‖1

(1 − δ2k)σ
2(min)
Q2k

(24)

We letκQ2k
= σmax

Q2k
/σmin

Q2k

‖vT0
‖1 ≤

√
2η′

2k

(1 − δ2k)
‖vT c

0
‖1 (25)

where

η′
2k =

κ2
Q2k

− 1 + δ2k(κ2
Q2k

+ 1)

2

ℓ1-minimization procedure requires the coefficient of null space property inℓ1 to satisfy

√
2η′

2k

(1 − δ2k)
< 1

a little algebra gives,

κ2
Q2k

· 1 + δ2k

1 − δ2k
<

√
2 + 1

If Q is canonical or orthonormal, i.e.κQ2k
= 1, straight away we have the conditionδ2k <

√
2 − 1 which is the

state-of-the-artRIP constant by Candes. This also verifies that our bound is tight.

3 Diagonal dominantf-LTM
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Figure 1: Ball-scene
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