Supplementary Document:
Compressive Inverse Light Transport

1 Lemma 3.1 ()

In this section, we shall prove that, in the backward prohBmmust satisfy exactly the same condition as that in the
forward problem, i.e, the null space property.

Let 3, be the set of alk-sparse vectors. We denatg to be thejth column of then x N measurement matrix
A, andB = AQ to be the observation matrix. We also usgeto denote thejth column of@ !, formally, Q! =

[u1, ug, ..., uj, ..., un]. Consider the problem,

Py () : min|z|o subject to Bx = A, 1)

We denote the minimizer of this problem asimplying its dependence af;. We will show that, for the minimizer
z; of Po_l(j) to be thejth column ofQ~!, a necessary and sufficient condition is f8rto satisfy the null space
property, i.eker(B) N 3g, = {0}.

Lemma 1.1. Letu; € ¥ be thejth column of@ 1. There exist a unique soluticty to the minimization procedure
Py '(4) such thati; = uj,

if and only if
ker(B) N Yok = {O}
Proof. “if":
We notice the fact thaty; € 3, is a solution to the equatioBiz = A;, i.e,
Buj = BQilej = AQQilej = Aej = Aj (2)
Suppose there exist another solutigne X, \{u;} satisfiesBx = A;, i.e,
B@j = Aj = Buj = B(fi'j - Uj) =0 (3)

We denoteAy; = ; — u; € Y. On the other hand, Eq?R? impliesAy; € ker(B), therefore,
ij € ker(B) N Yok

Sinceker(B) N X, = {0}, we have,
ij =0¢& jj = Uj

Sczzgezj' € ¥ is a solution toBx = A; as noticed in Eqr??, the uniqueness of solution 1§, ' (4) states that,
Vi; € ¥p\uj, BE; # Bu;
Vij € Yg\uy, B(Z; —u;) #0 (4)
SetAy; = &; —u; € 3o \{0}, Eqn??is equivalent to say,

Vij S ZQk\{O}, ij S ker(B)

This is equivalent to,
ker(B) N Yok = {O}
O

The null space property is very intuitive, it says that, ftnan-2k-sparse signald? has to take them t0, so that
for the non-zero compressions on the right hand side, thest be some sparse vector corresponds to it.



1.1 Theoretical conditions ()

Lemma??in section?? establishes an equivalent condition in observation marixhis enables us to concentrate
our study onB = AQ). We shall soon see its relationships with tREP as well asIncoherence in later sections.
Our primary goal in this section is to develop analyticalibs$or establishing condition oA and@. We introduce

a necessary and sufficient condition relating the Gram Ma##i B and the null space property in this section and
develop the extended null space property unftee= AQ. Note that all statements in this section dictates what
is theoretically possible and does not concern practicgllementations. The null space property and extended null
space property are not easy to check if given specific matride do not worry about practicality of I1-implementation
at the current stage, so now we have more freedom.

1.2 Gram matrix B%Br

Lemma 1.2. Givena sefl” C {1,2,...N}, we define the matriBr as the one formed fro® by using columns from
the setl’. All eigenvalues of the Gram matri,. Br are positive for al{7'||T'| < 2k} if and only ifker(B) N Xax, =

{0}
Proof. For any sefl’, sinceB. By is square, we are able to defifg eigen-pairg (\;, y;) };—1./7 with all eigenvalues
of BL. Br non-negative because for any eigen-gair, y;), we have

yiBLBry; || Bryil3

)\- = =
’ YiYi ||yz||§

>0 (5)

On the other hand, for any € Y, with z1 be the vector that has non-zero suppgbiiVe have ¢ ker(B), i.e.
Bz = Brzr # 0. Isolate out the elements on suppfriwe have

BT,TT 75 O,VSCT 75 0
Combine with EqrP?, we can prove thaf\; };—,. ;| > 0 forall {T||T| < 2k}. O

We can state other equivalent conditions to Lenf?faSincexzr = 0 is the only solution to the over-determined
systemBrxr = 0, therefore the columns dBr are linearly independent, which means that the dimensidheof
column space oBr is |T'|. Also, If we write By in a SVD form, we can easily observe that and B.. By have the
same number of non-zero singular values which'isSince the dimension aB%.Br is T' x T, we have thaB’. By

is square, full rank, and invertible, and again we emphastiat these are allecessary and sufficienbnditions for
Q! to be reconstructible. Expand dh = AQ, we haveBr = AQr and BL-.Br = QLA'AQr. If matrix A is
approximate orthogonal{’ A ~ I, then the condition requires th@¢.Q is approximately identity.

1.3 Extended null-space property ()
Proposition 1.1. If Aism x n andQ isn x p, then
rank(AQ) = rank(Q) — dim(ker(A) N Range(Q)). (6)

Lemma 1.3. Suppose a x |T'| matrix By with full column rank is a multiplication of @ x N matrix A and a
N x |T| matrix Q1 with
2IT|<n<N

Then
ker(A) N Range(Qr) = {0}

Proof. Since the columns aBy to be linearly independent, this means that
rank(Br) = rank(AQr) = |T|
Sincerank(Qr) < |T| = min(|T|, N) anddim(ker(A) N Range(Qr)) > 0, by Propositior??, we must have

rank(Qr) =|T| and dim(ker(A) N Range(Qr)) =0



Since in our casé€) is invertible and thusank(Qr) = |T|, for |T|-sparse vectors to be reconstructible, the sufficient
and necessary condition is
ker(A) N Range(Qr) = {0},VT

O

This means for allT'|-dimensional subspaces spanned by columns of m@trix should not take vectors in those
subspaces to zero.



2 Theorem 3.1

2.1 Linear mapping transforms Concentration Inequality

Proposition 2.1. (Concentration inequality, a.k.a Norm preservation) ket RY. For n x N random matricesA
whose entries are independent Gaussian random variables,

1
Aij NN(OaE)

or Bernouli random variables,
A +1/y/n  with probability 1/2
7 —1/4/n with probability 1/2

Then
Pr(||A2'|5 — |2’ [|2| > ell’[l2) < 279, 0<e<1 (7

wherec(e) = €2/4 — €3 /6.
If we let 2’ = Qx, immediately we have

Corollary 2.1. Letz € RY. Fornx N random matricest whose entries are independent Gaussian random variables,
1
A j ~ N(0, ﬁ)

or Bernouli random variables,
A +1/y/n with probability 1/2
7 —1/4/n with probability 1/2

Then
Pr(||AQz|3 — [Qxl2| > €| Qx[|2) < 2e7"9, 0 <e<1 (8)

wherec(e) = €2 /4 — €3/6.



2.2 Covering Numbers - Bridging R P and C'oncentration Inequality

Lemma 2.1. (Covering numbers) I is the unit sphere dR? relative to an arbitrary norn| - ||, then there exists a
setld € S with
2 N
Vze S, min|z—ul| <& and U] < (1+—> 9)
ueld 5
Proof. Let{us,...,un} C S be a set of points on the sphers such that|u; — u;|| > & forall i # j. We are able to
chooseh as large as possible becauséiascreases, we can choose smaflemherefore, we can always find a set of

U to ensure the following is true,
Vze S, min ||z—w <¢
i€[1:h]

Let B be the unit ball ofRY endowed with the norrfy - ||, i.e. {B : Vv, ||v|| < 1}. Since|ju; — u;|| > &, Vi # j, we
must have ¢ ¢

By + 5B] =0.Vi £ j

The above can also be obtained by a proof-by-contradictigumaent. Also we have

[ui +

§ § .
1L 2B C + =
u; + =B (1 )B,Vz

because; € S is on the unit sphere @&”, for anyz € B, we have

o+ 2 =01 <l + Sl < 145

Now we add-up the volume of all the batls + %B, by the inclusion argument from above, we get the inequality
5 h
U5 B) = > Qui +

i=1

£
2

B) <Q <(1 + g)B>

Then by theNV-homogeneity of volume

automatically

O
Corollary 2.2. If S is the unit sphere dR™V relative to Euclidean nornf - ||2, then there exists a sét C S with
N
: 209
Or equivalently,
2 N
Vz €S, Ing{{lHQz—QuHQ <og¢, and |U|< <1+?> (11)

Proof. Let {u,...,un} C S be a set of points on the spher8 such that|u, — u;|2 > ¢’ for all i # j. As stated in
Lemma??, we can always find a sét to ensure the following is true,

. 2\
Vz €S, 31613||z—u||2§§’, and |Z/{|§<1+?) (12)



which means that we can always find algeb ensure that the following is true

2 N
Vz e S, H161ZI/[1HQZ—QU||2 <og¢, and |U| < <1+?> (13)
this is because the following is always true:

1Q(z = ull2 < oqll(z — w2

seté = 0g&’, we have

N
VzeS, minllQz - Qul <& and U] < (1 + 2%) (1)

O

Corollary 2.3. Let K be a fixed index set of cardinalitik'| = k. If S, is the unit sphere of i relative to Euclidean
norm|| - ||z, then there exists a sét C Sy, with

k
Ve Sp,, min|Qz-Qul:<é and | < (1+2UTQ) (15)

or equivalently
k
2
Ve Sue miplQue - Qeula <, and < (14 272) (16)
whereQ g is the sub-matrix of) by picking its columns whose indices are in theset

Lemma 2.2. Let A be a random matrix of size x N drawn according to any distribution that satisfies the cance
tration inequality ??. Then, for any sek” with | K| = k and any0 < § < 1, we have

(1-90)[Qzl2 < [[AQz|2 < (1 = §)[|Qxl2, Yz € Tk a7
with probability
k
>1-2 <1 + 16—575106&(621()> e~ ned/4) (18)
wherex(Qg) = a;QK
Kmin

Proof. SinceA satisfies the concentration inequali®?, it must also satisfy the transformed concentration inétyua
by Corollary??. We denoteZ; as the event such thatAQu,||3 — [|Qul|3| > 2||Qu;|3 for eachu; . We apply the
transformed concentration inequality with= § /4 and apply Boole’s inequality to bound the “bad” events

0 J —ne(d
Pr(Jui, s.t, [[| AQus 13 — | Quill3| > ZHQWH%) < > Pr(llAQuil3 — [|Qus13] > ZHQWH%) < 2ufemw)
u; €U

2 k
<2 <1+ Ugj?K) e~ ne(d)

Now suppose that the draw of mattikgives

1) 0 )
14Quil3 ~ 1 Quall3 < FNQuill & (1= DIIQuill < 4Quillg < (1 + ) Quill3, Vus € U

Which implies that
) )
(1 = DIQuillz < |AQus]lz < (1 + )| Quillz, Yu; € U



e/ 5 5 s s
becaus 1—Z>1—Zand I+3<1+73.

Consider’ to be the smallest number such that
[AQz2 < (14 0")|Qx|2, Vr € Xk

Givenz € Xk with ||z]|2 = 1, we can find ai; € U C Sy, such that

36
[Qr — Quil2 <& = 3 55 C QK min
By triangular inequality,

1Quill2 — [Qxll2] < [|Qz — Quilla < & = [[Qzll2 — & < [[Quall2 < [[Qzl[2 +¢

So that 5
4@l < 1AQuils +14(Qs - Quile < (1+ 3 ) IQuill + (1+ )@z - Quil:

0
< (1+3) Gella+ )+ L+ ¢
Sinced’ to be the smallest number such that
[AQz[l2 < (14 9")[|Q|]2,Vx € Xk

So for anyr € Xk we have

U+ 9)Qale < (1+5) (@l + )+ 1+ 8 (0 - Z)Hang < (1 FiHa)e

) 36 )
< — 4 < e /

The last inequality holds becauge|| = 1. So we have

0 30
" < — r) ==
(1+4) < (2+4+5)8+55

A bit of algebra we can g&¥ < ¢, which means the following is always true

[AQxl2 < (1 +0)[|Qz[l2, Vo € Xk (19)

Now we consider the left hand side

14Q]lz > [ AQull2 — [ A(Q — Qui)z > (1 - —) 1Quills — (1 + 8] Qz — Quilla

> (1-3) Qe -9 - 1+ 8% = (1-3) sl —¢ (1- 3+ 0 +)

the last inequality is because of the fact th@t||> — & < [|Qu;l|2 < ||Qz|2 + £. we continue,
14Qul> > (1= 2 ) @l —€ (1 0+ 1 +8)) = (1-9) I@alls — g2 Ay
T2 Z T2 4 T2 — 8+550Qszn 4

J 5
(1__> Izl = 8+55”Qx”2 (2_1”/) (1_‘) Q|2 ~ 8+55||Q:v|z( —Z+6)

7



because of the fact that < §. We continue

] 30 30 ] 30 (8+30
4ol = | (1-5) = oo (24 2 ) [ heatle = | (1-5) = 5 (5525 )| el

> (1-0)[Qz[l2

which means that
(1—9)]|Qz|2 < [[AQz||2 < (1 +0)||Qz]|2, V2 € Tk (20)

O

Theorem 2.1. Suppose the matrid satisfies concentration inequality?. Then for any0 < § < 1 andn >
crkln (£X), there exist constantgd), c; (kq, , §) such that

Pr(|[|AQzllz — [[Qz]l2| > 8]|Qx]|2) < 2e~ O/ nmerkinte/b)

where
~1+In (1+ %H(Qk»

a= (6/4)

Proof. For eachk-dimensional subspacey, AQ will fail to satisfy Eqn??with probability

k k
<2 (1 + 16 251061%(@}{)) e—nc(6/4) <2 (1 + 16 ;51065(62”) e—nc(5/4)

wherex(Qy) is the largest condition number of all possible sub-masrige . Now we allow the subsek to vary,

Pr(3e € S, 5.4, [ AQz ]2 — Q2| > 6]Qxll2) < Y Pr(|llAQullz — |Qllz| > 8]|Qul|2)

Y CEg

< . 16 + 100 —ne(8/4) < o (Y 16+ 100 —nc(5/4)
= (k) 2 (1 30 K(Q’“)> c —2< k ) (1 30 K(Q’“)> ¢

— 278/ +k[In( ) +In (14252 5(Q1))] < 9—ne(6/9)+kIn( ) [1+In(142552 1(Qw))]

To ensure this value is small, we must impose

—ne(8/4) + kln (%) [1 +ln (1 + 16;751055(@@0] <0

eN
n > ckln <7>

14In (14 16H%5Q,))
“a= c(5/4)

Therefore,

where




2.3 Transformed Isometry Property

Definition 2.1. For each integerk = 1,2, ..., define the isometry constaf)t of a matrix B = AQ as the smallest
number such that
(1 =0 [1Q[l3 < [AQx|3 < (1 + 6x)|Qx|3, Yz € B (21)

Note that conventionaRl P is not equivalent t&d'/ P, Qx is not a sparse vector i/ P so that we cannot let
y = Qx and useRI P directly. T'I P holds if A satisfies concentration inequality with constanthus satisfies RIP
with constan®,. From the above definition,we can deducetth@sformed approximate orthogonality

Lemma 2.3. Denoteoy™” ando—g;”’U ,» to be the maximum and minimum singular value®ef, . We have

(AQz, AQz")| < nr.z[|z]|2]l2||2

where dmaz) Amaz) | 2(min)
max mZn ma min
Qriyrr ~ TQpy e T Okt (o 0+ 0 )

nr,r =

2
for all 2, 2’ supported on disjoint subsef3 7’ C 1,..., N with |T| < k,|T'| < k'

Proof. Letr andr’ to be unit vectors such that= r||z|» andz’ = r’||2'||2, we have
[(AQz, AQa")| = [(AQr, AQr")| - [|lz|]2[|2"]|2
Now we bound(AQr, AQr")|. By transformed isometry propertyy, r’ € X
(1= Gk IQ(r + )3 < 1AQ(r + 1) 13 < (1 + Sy ) |Q(r + )3
(1= G IQ(r = )3 < 1AQ(r = )13 < (1 + Sy ) |Q(r — 7)1
Suppose is supported ol andr’ is supported off”,
(1= kx| Qry o (r + )13 < IAQ(r + )13 < (1 + Spiw)|Qry v (r + 7)1

(1 = 0k |Qry v (r = )13 < 1AQ(r — )13 < (1 + ) 1Qry 1 (r — )3
As r andr’ are disjoint unit vectors,

Vaogit | =ogn r ez < 1Qryr(r £ 1)l S0t e £l = V20507

So we have,
21— S )02 < AQ(r £ 1)[3 < 201+ S o)

By parallelogram identity,

1 2(mazx 2(min max 2(min 2(mazx 2(min
(AQr AQr)| < FI(1+8usi )T ~21biss )T = oG~ s T+ )
Therefore we have,
||IH2||I/||2 2(mazx min max 2(min
(AQa, AQa!)| = F=E =20 ") — o5 + S (o) + og o)) = nraallzlle’ 2
If we defineo—gffk, € sup{o—g;”fJ LV T} anda"”" € 1nf{a"”" VT, 1"}, we have
2(max) 2(min) (mam) 2(min)
N < Netk! = I O T +5k+k,(gQ UQk+k’ )
TS Mkt 5
[l



2.4 TIP and Null-Space Property in/;

Lemma 2.4. Let B = AQ be any matrix which satisfiésI P of order2k with
max 2 1 5
g

( Qox ) 0% oy

g ) 1o

whereoys® = sup{o—gg”fJ VT =T = k} andogin = imf{o—g;”tJ | T = [T"| = k}. ThenB satisfy the null

space property irf;.

Proof. Letv € ker(B) and letT, be indices of the largedtentries ofv, T} be indices of the next largektentries of
v, and so on. The last sé&} may have less thahelements. So we have

v::va4—vT14—”.4—vTj4—”.+-vn

Sincev € ker(B), we have,

ABUijyH :<—£KUT24-”.+-vTj+-”.+-UTJ :<—l3§£:vrj
j=2

We now bound|vr, 7, ||2 by substituting the above equality,

S

”BvﬂﬂJTJg :|<BvaU737£g§E:vﬂ>|ZZE:XKEhUBrBUTJ|+W<BUTHrBUTJR
j=2 j>2

S S
< > my lomllzllvr 2 + nm oz lzllvr ll2) < maelllon, ll2 + oz ll2) D lloz, 12
j=22 Jj=2

S S
< man(llomll2 + lloz ll2) Y oz ll2 < V2naellon,ymillz Y llonll2

Jj=2 Jj=2

We used the transformed approximate orthogonality pravélts previous section and the fact that, |2+ ||vr, ||2 <
V2||vg, 7 |2 Now we use the left hand side 8t P,

min

(1= dan)ogr ™ Non,ur I3 < (1= da)ogm ') oz, ym I3 < | Benyn 13 < V2 nzk||vT0UT1HQZ||vTj||z

Jj=2

Divide the inequality by vz, | 7, [|2,

(1= dan)or ™ |log, s 12 < V2021 Z v, |I2 (22)
j>2

Now we try to bounc{j?>2 lvz; [|2 by [[vze|[1 SO that null space property i can be established. Itis intuitively true
by norm equivalence, but we still want to achieve the tightesind. For any € 7; andl € T;_;, we have scalars

03] < Jur], s0 thatju;| = 22l < 1"l therefore by norm equivalence,

HUTVlel ”U7t71”1
12 < VE|vp oo < VELD _ 7y
HUTJHQ — \/_HUT]” — \/_ ]{ \/E

So we have,

v, 11
Z vz, ll2 < Z N \/—HUT [

j>2 j>1

10



substitute the above inequality into inequali?p,

\/§ﬁ2k|\ng ||1

HUTOUT1||2 < 2(min (23)
V(L = 3)og "
sincel|vr, |l < VE[vn [l2 < VE|vr, 1 |12, we have,
\/57721@ VTl
gy < 2zl (22
(1 - 62k)0Q2k
We letkg,, = 08::/08;:
\/ﬁ%k
vz 1 < m””ﬂf”l (25)
where
/ K:2Q2k B 1 + 62k(ﬂé2k + 1)
ok = 9
£1-minimization procedure requires the coefficient of nubhep property irf; to satisfy
\/inék <1
(1 — dai)
a little algebra gives,
1+ 0or
2
Rom 15~ < V2+1

If @ is canonical or orthonormal, i.esq,, = 1, straight away we have the conditio, < v/2 — 1 which is the
state-of-the-arR [ P constant by Candes. This also verifies that our bound is.tight O

3 Diagonal dominantf-LTM

11
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Figure 1: Ball-scene
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