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A forward light transport simulates global illumination in a scene given
direct lighting or corresponding light source emission. It embodies the
forward rendering process, a cornerstone of computer graphics, which
aggregates the effect of light bouncing in a scene. An inverse light trans-
port reverses the forward process; it enables undoing of interreflections
and separation of light bounces in a real scene. In all current work, an
inverse light transport matrix (i-LTM) is obtained by inverting a forward
light transport matrix (f~LTM). For a projector-camera setup, a f~-LTM can
easily exceed the size of 10° x 10°. Acquiring such a large £-LTM can
take hours or days while inverting the f~LTM requires various forms of
approximation which compromises on the accuracy of the inverse light
transport. In this work, we propose a way of computing i-LTM directly
from the measurements without the need for a prior and explicit recon-
struction of the f~LTM. We show that within the framework of compres-
sive inverse theory, i-LTM can be obtained by compressed sensing di-
rectly without additional computational cost and aggregated error from
matrix inversion. This is done by computing the response of each pixel
by projecting patterned illumination. We probe the light transport matrix
by m illumination conditions L = [ly, ..., 1] to obtain their corresponding
observations C = [¢y, ..., ¢, which is,

C=TL& CT =LTT! & ¢, =Lt (1)
where t; is a column in T7 that represents the reflectance function of the
i-th pixel in the camera image and ¢} is a column of CT. Eq.1, relating
illumination and observation by T, can be rewritten as:

CT(T_])T :LT (2)
This formulation maps directly to a compressive sensing context where
CT fulfills the role of the encoding matrix, and the LT represents the
codes. To exploit sparsity in both rows and columns of T~1, T~! can
be further represented as T~! = WT-IW7”. The right transformation
WT operates on the rows of the transport matrix to exploit the coherency
within the rows, while the left transformation W operates on the columns
of the i-LTM.

CTW(T-1T =LTW. 3)

The optimization problem for reconstructing the i-LTM (T~1)7 becomes:

(P3)  min|hjost. CTWh; =L, (i), i=1,..,N )
where h; denotes the i-th column of (T-17, ie. (T-HT = [hy,...,hy],
and L, (i) denotes the i-th column of L” W. For orthonormal matrix W,
the following lemma shows a necessary and sufficient condition for this

problem to have a unique solution.

Lemma 0.1. Given a setJ C {1,2,...N}, define the matrix T as the one
formed from T by using columns from the set J. Let h; € Sy be the ith
column of (T~YT. There exist a unique solution h; 10 the minimization
procedure P(3) such that h; =h,,
if and only if

ker(LT)N'T; = {0}, {VJ||J| < 2k}

It can be interpreted as follows, for the minimizer h; of (P3) to be the

i-th column of (T—1)T, a necessary and sufficient condition is that, any of
the K-subspaces spanned by T is not contained in the null space of L7
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Figure 1: Quantitative comparison of the 2nd-bounces separated from the
i-LTM acquired by our direct method and the two-phase method. The
first row and the third row show the results of our direct method, while
the second row and fourth row show the reconstruction results of the two
stage method.

Now we develop a sufficient condition under which problem (P4) in

Eq. 5 guarantees to have the same solution as problem (P3) thereby en-
abling efficient algorithms.

(P4)  min|h||; s.t. CTWh; =Ly(i), i=1,..,N. )

Our theorem below is based on a careful examination of submatrices con-

sisting of an arbitrary collection of k£ columns. Please refer to our paper

for explanation of notations.

Theorem 0.1. Ler LT be any matrix of size m x N with D-RIP ratio
k k .
Wor (26). Let 14(T) = Ghon(T) /0l (T), if

min

K2, (T) - 1 (2k) < V241 (©6)

Then, {1-minimization will exactly recover h € S .

This theorem states that, provided that the submatrices of T is reason-
ably well-conditioned, we can still ensure an exact recovery of a sparse
h. When L7 has a smaller isometry constant 8y, i.e., LT contains more
random patterns, then there is larger room for Kzzk (T) to vary while still
ensures reconstruction. On the contrary, if the submatrices of T are well-
conditioned, i.e., k% (T) — 1, we can afford an illumination pattern L7
with less rows (fewer measurements). Fig.1 shows a quantitative compar-
ison of the 2nd-bounces from the i-LTM acquired by our direct method
and the two-phase method.



