
BMVC 2011 http://dx.doi.org/10.5244/C.25.35

BOUSSAID et al.: 3D MODEL BASED FEMUR RECONSTRUCTION 1

3D Model-based Reconstruction

of the Proximal Femur

from Low-dose Biplanar X-Ray Images

Haithem Boussaid1,2

haithem.boussaid@ecp.fr

Samuel Kadoury5

samuel.kadoury@philips.com

Iasonas Kokkinos1,2

iasonas.kokkinos@ecp.fr

Jean-Yves Lazennec4

lazennec.jy@wanadoo.fr

Guoyan Zheng3

Guoyan.Zheng@istb.unibe.ch

Nikos Paragios1,2

nikos.paragios@ecp.fr

1 Center for Visual Computing
Ecole Centrale Paris, France

2 Equipe GALEN, INRIA Saclay
Île de France, Orsay, France

3 Institute for Surgical Technology and
Biomechanics
University of Bern, Switzerland

4 Centre Hospitalier Universitaire Pitié
Salpétrière, Paris, France

5 Philips Research North America
345 Scarborough Rd
Briarcliff Manor, NY, 10510 USA

Abstract

The 3D modeling of the proximal femur is a valuable diagnostic tool for orthopedic
surgery planning. The use of computed tomography is the most prominent modality to
visualize bones both in terms of resolution as well as in term of bone/tissue separation.
Towards reducing the impact of radiation to the patient, low-dose X-ray imaging systems
have been introduced while still providing partial views with rather low signal-to-noise
ratio. In this paper, we focus on automating the 3D proximal femur reconstruction from
simultaneously acquired 2D views. A deformable model represented by triangulated
mesh surfaces extends to a linear sub-space describing the variations across individuals.
Segmentation consists of inferring a global deformation of 3D model followed by a local
adaption based on the most prominent combination of the sub-space parameters. The ba-
sis of which relies on the minimization of a cost function based on the biplanar projection
of this model. To this end, we employ an active region model that aims at optimizing the
3D model parameters such that projection of surface is attracted from edge potentials,
while creating an optimal partition between the bone class and the remaining structures.
The global parameters of the model and the local ones are optimized through a gradient-
free approach. Promising results demonstrate the potentials of our method compared to
a supervised reconstruction technique.

1 Introduction

Personalized 3D proximal femur planning inherits important diagnostic interest in related
surgical interventions such as total hip replacement and intertrochanteric osteotomy [3].
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Conventional 3D imaging modalities such as CT and MRI have been the standard of care
for these types of applications. However, CT induces high radiation doses to the patient
while MRI cannot be performed for follow-up cases with post-operative metallic implants.
Moreover, these modalities require the patient to be lying down, causing a long acquisition
protocol with a clinically insignificant patient positioning to assess physiological function.
In order to reduce radiation, prior works have focused on 3D reconstruction methods from
bi-planar X-ray images based on stereovision techniques [5, 13]. Our work lies within this
scope using the low dose EOS imaging system (BiospaceMedT M) which is an alternative
modality producing simultaneous biplanar X-ray images in an upright position.

Since 3D shape reconstruction from only biplane images is a fundamentally challenging
problem, the alternative is to use prior knowledge with regards to variability in structural
changes, taking advantage from the fact that bones have their standard patterns of distribution
[4]. In this paper, we seek to build a parametric model learned from a training set and
automatically perform a 3D reconstruction of the proximal femur based on available 2D
information from the patient’s image. The problem is thus formulated as an adaptive 2D/3D
registration.

Active shape models [1] elegantly describe the variation of a shape in a population and
has been shown to accurately model anatomical objects. Another approach is to build a
hybrid atlas [10] described by a set of connecting spheres contained within the bounding
surface of the shape, thus creating a higher number of parameters to optimize.

Solving the 2D/3D registration problem has been extensively investigated in medical
imaging and computer vision. In [6], the authors propose to segment the femur contours
in the X-ray images through a level set technique in order to build a distance map before
proceeding to registration. Feature-based registration techniques rely on identifying specific
landmarks [7, 9] and thus require the user intervention and a suitable user interface which
is not practical an in inter-operative context. Other approaches have attempted to solve the
problem through digitally reconstructed X-rays (DRR) based techniques, which are time
consuming with limited results. Since the main challenge of X-ray imaging is the low im-
age quality with overlapping structures hindering the visibility of anatomical landmarks, the
definition of a robust objective function as well as the optimization scheme is challenging.

In this paper, we consider an iconic approach to address the above mentioned limita-
tions. Prior knowledge is represented in the 3D space using a linear 3D point-based sub-
space model that is learned from a training dataset. The inference is performed using an
active region model that seeks silhouette/edge proximity with optimal regional separation of
intensities between bones and the rest of the image. Using the projection matrix associated
with this modality, and an optimization method that does not require the computation, we
optimize the 3D model parameters using the information being observed in the X-ray im-
ages. We propose thus a one stage automatic framework that solves the problem of joint 3D
reconstruction and 2D segmentation of the proximal femur.

2 Statistical Model Construction

2.1 Model parameters

The aim of building the parametric model is to use a training dataset of triangulated meshes
from segmented CT to compute the principal components of shape variation from the patient
population. Principal component analysis (PCA) is used to describe the different modes of
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variation with a restricted number of parameters [1]. The axes of the shape space are oriented
along directions in which the data has its highest variance (Fig. 1(a)). In order to compen-
sate for the varying positioning during CT acquisition, we use a Demon’s algorithm [11]to
estimate the dense deformation fields between the binary volumes after a scaled rigid regis-
tration was applied. Each estimated deformation field is then used to displace the positions
of the vertices of the reference surface model to the associated target volume. We thus ob-
tain surface models with established point correspondences. As a scaled rigid registration is
applied before the non-rigid registration for each model, our model only captures the shape
variations but not the scales:

Ŝ(R,D) = S(R)+
L

∑
i=1

wiVi (1)

where S is the mean shape. R is a vector describing the rigid parameters. In addition,
D = {wi}

L
i=1 are the shape parameters which needs to be determined and {Vi}

L
i=1 are the

eigenvectors.

2.2 Modeling the projection of the low-dose X-ray system

The EOS system is a radiographic imaging modality designed to dramatically reduce ra-
diation doses using revolutionary particle detectors and an acquisition technique based on
line-scanning. Because of these novel capabilities, EOS enables simultaneous acquisitions
of two images, coronal and sagittal views in the upright position (Fig. 1(b)). Due to the
particular fan beam projection, the system projection matrix does not follow the classical
perspective model applied in stereovision theory. If M(x,y,z) is a 3D point in the EOS cabin
and Pt(wu,v,w) its projection point in the reference plane, the projection matrix M is as
follows:
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where L1 and L2 represent the translation parameters. Note that the coordinate v is not
multiplied by w and no homothetic transformation is applied in z. SR is source reference
plane distance and SI is the source isocenter distance.

2.3 Projection of the 3D silhouette contour

A crucial component of 2D/3D registration scheme is that available information is repre-
sented in different spaces. One of the key challenges is then the need for an appropriate
way to compare multidimensional datasets (3D triangulated parametric model and bi-planar
X-ray images). We extract the silhouette of the 3D model of the femur by projecting silhou-
ette edges in 2D, with respect to the system projection matrix, allowing us to create a binary
mask defining the region inside and outside of the femur and the contours naturally (Fig. 2).
Because of the line-sweeping acquisition technique of the X-ray beams, our silhouette com-
putation and definition is different from state of the art techniques. It consists of the mesh
edges which are adjacent to both a front facing and a back facing polygon. A mesh polygon
is front facing to a given point of view P if its plane equation is a positive multiplicative
factor. Otherwise it is back facing. Note that P changes it’s value along the Z axis during the
acquisition.
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(a) (b)

Figure 1: (a) The first two eigenmodes of variation of the model and (b) the geometrical
setup of the EOS system.

Figure 2: Sample results from the silhouette extraction scheme and generated masks.

3 Inferring the Model from Biplanar X-rays

Given a deformable model with the appropriate projective model for the low-dose system,
we now define the metrics to quantify the discrepancy between the projected model and the
biplanar X-rays. We define a specific objective function adapted for femoral modeling. The
cost is based on a Geodesic Active Regions (GAR) framework [12]. The GAR functional is
the convex combination of the geodesic active contours and geodesic active regions:

EGAR(Ci(R,D)) = αEC(Ci(R,D))+(1−α)ER(Ci(R,D)), (3)

where C is the projected silhouette contours and α the weighting parameter. The active
contours term reaches its minimum when the curve C falls along strong edges in the image,
defining thus implicit distance maps defined as:

EC(Ci(R,D)) =
∮

Ci

g(Ci(s))ds (4)

g(I) =
1

1+ |∇I|
. (5)

The geodesic active regions part is a log-likelihood objective function which aims to en-
capsulate femur-like pixels within the projected silhouette of the 3D model while excluding
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background-like and other structure pixels:

ER(Ci(R,D)) =−
∫ ∫

R
log(pR(Ii(u,v)))dudv. (6)

To apply this method to our problem, we must define a generative model which models the
distribution of pixels intensities pR inside the femoral region. Here, we adopt a nonpara-
metric kernel density estimation method. Hence, this framework does not require any user
interaction to define 2D contours on the X-ray images in order to match the ASM model to
a segmented silhouette. Our method unifies segmentations in a coherent fashion with the
registration problem.

3.1 Sequential rigid and deformable registration

The 2D/3D rigid registration consists in defining a geometric affine transformation defined
by the parameter vector R that best specifies the position and orientation of the examined
anatomy of the femur when acquiring the 2D projection images while dense registration
consists of optimizing the ASM parameters defined by D = {wi}

L
i=1. In order to initialize the

registration process, the approximate femoral head center in both images is identified. Since
the projection matrices are known, it is possible to calculate the projection ray for any given
image point. Thus, the 3D position of the femoral head midpoint can be easily found by
a standard triangulation method using its 2D coordinates in order to align the imaging and
world coordinate systems. To initialize the model given a set of biplanar X-ray images, we
need to assess the quality of a candidate ASM instance, described by the parameter vector.
This is done by measuring the most consistent ASM configuration for a new patient and
the rigid parameter values corresponding to the minimal value of our cost function among
possible parameter vectors is determined.

3.2 Optimization

As we formulate the inference as a minimization problem, we perform an iterative search to
locate the parameters which obtains the minimum of the cost function. For each iteration of
the algorithm, we use the current set of parameters to build the ASM model and simulate
the observed X-ray images by the construction of binary silhouette images. We compute
the quality of the consistence between these silhouette images and the corresponding X-ray
acquisitions, followed by an update of the individual set of parameters until convergence
is achieved so to obtain the optimal set. In order to identify in an efficient and/or reliable
manner the set of updates, we need to define an optimization procedure which best suits the
defined objective function. Gradient procedures use the gradient information to indicate the
direction to the desired extremum. However, in our case, back-projection of the derivative
of the objective function into the pose space is a complex procedure. Thus, we consider the
Downhill simplex [8] method which is efficient in converging toward the desired minimum,
requires only function evaluations and does not require the computation of derivatives. The
following is the objective function which is to be minimized:

R,D = argmin
R,D

EGAR(C1(R,D))+EGAR(C2(R,D)). (7)
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4 Synthetic and Clinical Experiments

4.1 Training data and methodological description

Our training database consists of 17 training surface models. The 17 training surface models
were constructed from 17 binary volumes that were semi-automatically segmented from CT-
datasets of patient hips. We use the first 10 principal modes of our PCA model, which
statistically covers more than 99 % of the total variations of the model dataset.

Experiments were performed on both dry femurs and real clinical cases obtained from
patients undergoing Total Knee Arthoplasty. We used 12 pairs of EOS images of a dry femur
considered as our in vitro experiments, as well as 4 in vivo EOS images. We compared our
results to those obtained by the gold standard CT segmented models as well as a method
based on 2D manual segmentations. In order to estimate the error between the method and
the ground truth, we compute the DICE coefficients and statistics anchored on point-to-
surface distances. Moreover, clinicians, in the context of the Total Hip Replacement(THR)
intervention, are interested in femur specific morphological parameters. The most important
femur clinical parameters are the Neck Shaft Angle (NSA) and the Neck Shaft length (NSL)
(Fig. 5). In order to estimate these parameters, we compute femur shaft axis and neck axis
using the Scale Axis Transform method [2].

4.2 In vitro experiments

Ground-truth evaluation is performed on a set of available CT images. The error of the
reconstructed model compared to CT was of 1.5 mm (Fig. 3, Table 1), which is in the
range of acceptable tolerance for clinical assessment. We can observe from Fig. 3 that
the maximum error is present in the the trochanter minor area. However shape variation in
the trochanter area is fairly irrelevant for clinical purposes and therefore does not require
for further processing. Surgeons are especially interested in the area of the femur head
and neck. Our method exhibits excellent performance in these regions with respect to the
manual method. In order to show that our method is able to achieve similar performance
with the manual reconstruction method[7], despite the fact that our method is automatic,
we compute point to surface distance to this supervised method (Table 2). Regarding the
clinical parameters, statistics on error between the produced parameters and Ground Truth
parameters are evaluated in Table 4

4.3 In vivo experiments

In order to avoid the problem of superposing contours which is critical in the sagittale image
in the case of in vivo patients, we chose to work on images of patients oriented at 45◦ in
the EOS cabin. For the in vivo validation with real clinical trials, at the absence of CT data,
we computed the Hausdorff distance between manual 2D segmentations and our projected
results on the X-ray images (Fig. 4, Table 3).

5 Discussion

While the SSM and the GAR were inspired from previous work, active shape/surface mod-
els were not considered within such an energy formulation, where the coefficients of the
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Proposed method Supervised method [7]
Femur # Mean RMS S.D. DICE Mean RMS S.D. DICE

1 1.48 1.73 0.89 0.933 1.21 1.48 1.25 0.935
2 1.44 1.63 0.77 0.916 1.06 1.27 0.85 0.922
3 1.73 2.01 1.01 0.899 1.41 1.85 1.23 0.898
4 2.04 2.33 1.13 0.908 1.4 1.72 1.16 0.914
5 1.80 2.15 1.17 0.903 1.15 1.49 1.22 0.934

Table 1: Dice coefficients and point-to-surface distances (mm) to CT data.

Metrics
Femur # Min (mm) Max (mm) Mean (mm) RMS (mm) S.D. (mm)

1 0.03 8.72 1.73 2.18 1.34
2 0.04 8.16 1.8 2.3 1.33
3 0 8.16 1.8 2.3 1.33
4 0.09 7.3 1.46 1.83 1.09
5 0.04 9.84 1.86 2.34 1.42
6 0.1 9.82 1.91 2.3 1.29
7 0.05 10.3 1.82 2.48 1.69
8 0 10.05 1.64 2.15 1.38
9 0.01 5.44 1.36 1.64 0.97
10 0.03 8.02 2.11 2.59 1.6
11 0.06 7.06 2.12 2.57 1.51
12 0 7.45 1.65 2.02 1.31

Table 2: Point-to-surface distance compared to manual method.

Case# Haussdorff distance (mm)

1 2.69
2 5.38
3 2.48
4 4.34

Table 3: Hausdorff distances to ground truth.

Error on Neck Shaft Angle (degř) Neck Shaft Length (mm)

Min 1.24 0.7
Max 4.16 3.9
Mean 2.26 1.84
S.D 0.78 0.64

Table 4: Errors on clinical parameters
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Figure 3: Point-to-surface distances to ground-truth CT models. Error distribution on mean
femur model compared to CT.

subspace are estimated without explicit correspondences and one can infer 3D surface from
2D images. Conventional ASMs will fail in the context of this work since it is impossible
to establish correspondences between the 3D model and the corresponding 2D projections.
Moreover, opposite to conventional use of these models where optimal surface estimation is
obtained through gradient descent on the parameter space, we consider a gradient free opti-
mization method that allows to overcome the inverse projection of the gradient from the 2D
images to the 3D space. Besides, Our automatic one-stage framework integrates a novel sim-
ilarity metric adapted for femoral modeling, with implicit distance maps and intensity models
to measure support from image data. Note that prior works proposed by [13] and [6] both of
which need some manual interaction to determine 2D contours. Therefore, they require user
intervention and a suitable user interface which is not practical in an inter-operative context.

Comparison with a supervised method was performed, in the experimental validation,to
emphasize the novelty of our method. We show that our method is able to achieve similar
performance with this manual reconstruction method[7], despite the fact that our method
is automatic. Our data set could be improved, however we believe that preliminary results
demonstrate the interest and the potentials of the method. Future work includes analyzing a
larger data set.



BOUSSAID et al.: 3D MODEL BASED FEMUR RECONSTRUCTION 9

Figure 4: 2D segmentation results.

Figure 5: Schematic illustration of proximal Femur showing the axes for measurements of
clinical parameters: Neck Shaft Angle (NSA) and Neck Shaft Length (NSL)

6 Conclusion

In this paper we have proposed a novel approach for femur pose estimation from biplanar
X-ray images. The femur is represented using a triangulated surface topology where statis-
tics are build from a linear sub-space. The parameters of this model are exploited along
with the specific projection geometry of the EOS system to define an objective function
that aims at separating the bone population from the background, while being primarily de-
formed towards from bone edges. Towards addressing the back-projection of the derivative
of the objective function into the pose space, a gradient-free method is considered producing
promising results. Future work includes analyzing a larger dataset of models and integrating
the representation of the prior model using graphical models and the use of global pose-free
parameters prior model and objective function. This can be achieved using higher order
graphical models.
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