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The 3D modeling of the proximal femur is a valuable diagnostic tool

for orthopedic surgery planning such as total hip replacement and in-

tertrochanteric osteotomy. The use of computed tomography is the most

prominent modality to visualize bones both in terms of resolution as well

as bone/tissue separation. Towards reducing the impact of radiation to the

patient, low-dose X-ray imaging systems have been introduced while still

providing partial views with rather low signal-to-noise ratio. Our work

lies within this scope using the low dose EOS imaging system (BiospaceMedT M)1

which is an alternative modality producing simultaneous biplanar X-ray

images in an upright position. In this paper, we focus on automating

the 3D proximal femur reconstruction from simultaneously acquired 2D

views. A deformable model represented by triangulated mesh surfaces

extends to a linear sub-space describing the variations across individu-

als. Principal component analysis (PCA) is used to describe the different

modes of variation with a restricted number of parameters [1].

Ŝ(R,D) = S(R)+
L

∑
i=1

wiVi (1)

S is the mean shape. R is a vector describing the rigid parameters. D =
{wi}

L
i=1 are the shape parameters and {Vi}

L
i=1 are the eigenvectors. Seg-

mentation consists of inferring a global deformation of 3D model fol-

lowed by a local adaption based on the most prominent combination of

the sub-space parameters. The basis of which relies on the minimization

of a cost function based on the biplanar projection of this model. To this

end, we employ an active region model[5] that aims at optimizing the

3D model parameters such that the projection of the surface is attracted

to edge potentials, while creating an optimal partition between the bone

class and the surrounding structures. The functional is the convex combi-

nation of the geodesic active contours and geodesic active regions:

EGAR(Ci(R,D)) = αEC(Ci(R,D))+(1−α)ER(Ci(R,D)), (2)

where C is the projected silhouette contours and α is a weighting parame-

ter. The active contours term reaches its minimum when the curve C falls

along strong edges in the image, defining thus implicit distance maps de-

fined as:

EC(Ci(R,D)) =
∮

Ci

g(Ci(s))ds,g(I) =
1

1+ |∇I|
. (3)

ER(Ci(R,D)) =−
∫ ∫

R
log(pR(Ii(u,v)))dudv. (4)

The geodesic active regions part is a log-likelihood objective function

which aims to encapsulate femur-like pixels within the projected silhou-

ette of the 3D model while excluding background-like and other structure

pixels: The global parameters of the model and the local ones are opti-

mized through a gradient-free approach [4] that allows to overcome the

inverse projection of the gradient from the 2D images to the 3D space.

R,D = argmin
R,D

EGAR(C1(R,D))+EGAR(C2(R,D)). (5)
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Figure 1: (a) The first two eigenmodes of variation of the model and (b)

the geometrical setup of the EOS system.

Figure 2: 2D segmentation results.

The resulting automatic one-stage framework does not require any user

interaction to define 2D contours on the X-ray images in order to match

the ASM model to a segmented silhouette. Note that prior work proposed

by [2] require manual interaction to determine 2D contours which is not

practical in an inter-operative context.

Promising results demonstrate the potentials of our method. Exper-

iments were performed on both dry femurs and real clinical cases. We

compared our results to those obtained by the gold standard CT segmented

models as well as a method based on 2D manual segmentations[3]. In

order to estimate the error between the method and the ground truth, we

compute the DICE coefficients and statistics anchored on point-to-surface

distances as well as estimating the most important femur specific clinical

parameters.
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