
Demisting the Hough Transform for 3D Shape Recognition and Registration

Oliver J. Woodford
Minh-Tri Pham
Atsuto Maki
Frank Perbet
Björn Stenger

Cambridge Research Laboratory,
Toshiba Research Europe Ltd.
Cambridge, UK
firstname.lastname@crl.toshiba.co.uk
www.toshiba-europe.com/research/crl/cvg/

1 Overview
The Hough transform [2], named after Hough’s 1962 patent describing a
method for detecting lines in images, has since been generalized to detect-
ing, as well as recognizing, many other objects: parameterized curves , ar-
bitrary 2D shapes, cars [4], pedestrians [1], hands and 3D shapes [3, 5, 6],
to name but a few. This popularity stems from the simplicity and gener-
ality of the first step of the Hough transform—the conversion of features,
found in the data space, into sets of votes in a Hough space, parameterized
by the pose of the object(s) to be found. The second stage of the Hough
transform then simply sums the likelihoods of the votes at each location
in Hough space, and selects the modes of the resulting distribution.

A problem with this latter step is that the summation can create modes
where there are only a few outlier votes. Indeed, as stated in [1], no
probabilistic interpretation that fully explains this approach has yet been
provided. A second problem is that, given a required accuracy, the size of
the Hough space is exponential in its dimensionality. The application we
are concerned with, object recognition and registration from 3D geometry
(here, point clouds), suffers significantly from both these problems. The
Hough space, at 8D (one dimension for class, three for rotation, three for
translation and one for scale), is to our knowledge the largest to which
the Hough transform has been applied, and the feature-to-vote conversion
generates a high proportion of incorrect votes, creating a “mist” of object
likelihood throughout that space, as shown in figure 1(a).

In the face of this adversity, we have developed two important contri-
butions which enable inference on this task, and potentially many others,
using the Hough transform to be both feasible and accurate:

• We introduce the intrinsic Hough transform, which substantially
reduces memory and computational requirements in applications
with a high dimensional Hough space.

• We introduce the minimum-entropy Hough transform, which greatly
improves the precision and robustness of the Hough transform.

2 Methods
We note that while the Hough space increases exponentially with its di-
mensionality, the number of votes generated in applications using the
Hough transform generally do not, implying that higher dimensional Hough
spaces are often sparser. We exploit this sparsity by sampling the Hough
space only at locations where the probability is likely to be non-zero—at
the locations of the votes themselves. Since the votes are intrinsic to the
distribution, we call this the intrinsic Hough transform.

Recently Barinova et al. [1] introduced an alternative vote-based in-
ference framework which exploits the assumption that only one vote cast
by each feature is correct, with the result that correct votes are able to
explain away incorrect votes from the same feature for the first time. We
exploit this same assumption within the Hough transform, by optimizing
the weights of votes w.r.t. the information entropy of the vote distribution.
A lower entropy distribution contains less information, making it more
peaky and hence having more votes in agreement. Since information in
Hough space is the location of objects, minimizing entropy constrains
features to be generated by as few objects as possible, enforcing Occam’s
razor. We call this approach the minimum-entropy Hough transform.

Our paper presents a local method for minimizing entropy using iter-
ated conditional modes, optimizing weights for each feature in series. An
initialization strategy is proposed which helps reach a good minimum.

3 Results
Our paper presents experiments on a dataset of 1000 test point clouds
of 10 different objects, captured using a multi-view stereo method, and
evaluates both recognition and registration performance of our methods.
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(a) Standard Hough (b) Min.-entropy Hough
Figure 1: Demisting the Hough transform. Posterior distributions over
translation and ten object classes (six of which are present in the scene),
with scale and rotation marginalized out.
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(a) Intrinsic Hough (b) Min.-entropy Hough (c) Precision-recall
Figure 2: Quantitative results. (a,b) Recognition confusion matrices and
(c) precision-recall curves for correct recognition and registration.

While intrinsic Hough allows the Hough transform to be applied to the
full 8D Hough space of this problem, the minimum-entropy Hough trans-
form dramatically improves recognition rates (figure 2(b)), as well reg-
istration performance, as indicated by the improvement in precision vs.
recall shown in figure 2(b). It can be seen qualitatively in figure 1 that this
improvement comes from the latter method “explaining away” incorrect
votes.

4 Conclusion
We present two extensions of the Hough transform, which are not task
specific; they can be applied, either together or independently, to any ap-
plication that does or is able to use the standard Hough transform. We
demonstrate, through applying these extensions to the task of 3D shape
recognition and registration, that the assumption that only one vote gen-
erated by each feature is correct is a powerful constraint in vote-based
frameworks, which can dramatically improve inference by “clearing the
mist” of incorrect votes.
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