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Abstract

We propose an approach for improving unconstrained face recognition based on
leveraging weakly labeled web videos. It is easy to obtain videos that are likely to
contain a face of interest from sites such as YouTube through issuing queries with a
person’s name; however, many examples of faces not belonging to the person of inter-
est will be present. We propose a new technique capable of learning using weakly or
noisly labeled faces obtained in this setting. In particular, we present a novel method for
semi-supervised learning using noisy labels which incorporates a margin or null category
like property within a fully probabilistic framework. We outline general properties of the
approach, showing how the choice of an exponential hyperprior results in an L1 penality
which leads to sparse models capable of explicitly accounting for label uncertainty pro-
ducing state of the art performance. We then illustrate how the margin approach provides
robustness and significant performance gains when faces within YouTube search results
are combined with the unconstrained face images from the Labeled Faces in the wild
dataset.

1 Introduction
Facial recognition research has recently focused on the more difficult task of recognition in
unconstrained images – images of faces in commonly occuring conditions. These images are
usually produced by consumer digital photographers under conditions of varying illumina-
tion and pose, often occluded (e.g. with glasses), sometimes heavily compressed or degraded
by motion blurring. Despite much work in recent years, facial recognition in these conditions
remains a difficult task. In the case of unconstrained facial recognition, using only labeled
examples, where the number of labeled examples may only be on the order of hundreds, is a
primary source of this difficulty.

Finding sources of unlabeled facial images is not a challenging task. Several large web-
based collections such as Flickr and Google Images provide public access to millions of
static images. However, while static images may provide a large number of examples, the
numbers of such images compare poorly to those available in video. Furthermore, facial
images in video have properties which differ from static images – facial images sampled
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from a video will tend to have similar if not identical backgrounds, common illumination
and other common properties which may help to model the manifold-like properties of a
single subject’s face. At the same time, facial images in video are even less constrained
than in static images, making recognition in video a difficult task even with large amounts of
labeled static images.

However, we believe that video simply provides more information than static images
alone. To that end, we create a large new dataset of facial images sampled from Youtube
videos designed to mirror the Labeled Faces in the Wild dataset [9]. Although the database
is unlabeled, information related to each video provides context for facial images contained
within the video. We use the simple approach of using search queries as a weak label. We
then use simple descriptor based methods shown to have good performance in the uncon-
strained face verification task and combine this feature representation with a novel prob-
ablistic model with a low-density separation approach and show that unconstrained facial
recognition in both static and video images can be significantly improved using unlabeled
data.

1.1 Related Work

Related Work on Facial Recognition The Labeled Faces in the Wild Dataset (LFW), cre-
ated by Huang et al. [9], provides a natural composition of face images. However, the mean
number of training images per subject in this dataset is little more than 2, with roughly less
than 30% of the data available as use for traditional train and test supervised classification.
This makes facial recognition in the traditional sense a difficult task. As such, the stated
focus of the LFW database is on the pair matching task or one-example learning, which
roughly shares the same objective [9]. Pair matching using the LFW dataset is quite mature,
with current accuracy of better than 88% as in [18] and [20].

Pair matching, however, is not an identical problem to the face verification task as coined
by Huang et al [9]. In face verification, an algorithm is tasked to label a test image as
belonging to one of a set of subjects. Although a pair matching algorithm can be used in
a nearest-neighbor fashion, the standard approaches of multi-class classification can also be
brought to bear. The work by Wolf et al. [25] and [24] are the most representative of this
work. [24] specifically addresses the question of how well descriptor-based methods often
used in verification tasks in object recognition work for pair matching. Wolf et al. note that
for classes with a relatively large number of training examples, (greater than 10), resulting
in a subset of classes, quite good results can be achieved [24]. It therefore appears that the
main issue is the number of labeled positives in the LFW dataset. Naturally, this raises the
question of whether semi-supervised approaches can be utilized instead of labeling many
images by hand.

Semi-Supervised Learning Margin-based or margin-like properties have been presented
before in the context of semi-supervised learning i.e.. low density separation. Entropy reg-
ularization [7] finds a classifier in which the classes of the unlabeled data are maximally
separated according to the entropy of the conditional distribution. Assuming absence of a
weak label, and not using a null category, the resulting objective function is similar in spirit.
Transductive support vector machines (SVM) [11], [12] find a decision boundary consis-
tent with the labeled data which maximally separates both the labeled and test (unlabeled)
data. Meanwhile, incorporating prior knowledge in a manner similar to our method using
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a weighted margin SVM and confidence values obtained from unlabeled data is presented
in [26]. The null category noise model is presented in the context of Gaussian processes to
produce decision boundaries in regions of low density in an attempt to produce a margin-
like effect in a fully Bayesian framework [15]. This paper attempts to present a similar
low-density separation method which softens the hard constraints used in the the transduc-
tive SVM and the null-category noise model, and also extends this framework to use weak
labels.

The use of weak labels of this nature is closely related to the Generalized Expectation
Criteria of McCallum, Mann and Druck [17], [4], and to the Expectation Regularization
of Mann and McCallum [16]. In the latter case, the algorithm is expected to match the
proportion of labels on the unlabeled data in a global sense, using a temperature setting to
help enforce “peaky” imputed labels. Here, the weak labelings are local estimates, using
a null category to avoid labeling data points which are low confidence. The method most
similar to our type of prior information is in Zhu and Ghahramani’s graph based algorithm
which incorporates class prior information [27], however, there the emphasis is on the graph
method and no attempt is made to make the class priors robust.

2 Model

gi g j

yi y j

xi w x j

i ∈ L j ∈ U
Figure 1: Graphical model of semi-supervised learning as presented in [15], U is the index set of
unlabeled examples, and L is the index set of the labeled examples.

In this framework, a datasetD is composed of sets of variablesD= {(xn,yn,gn)}n=1,2,...,N ,
with x ∈Rd , y ∈ {−1,1}, and g ∈ {−1,1}, where the conditional dependencies are specified
as in the model shown in Figure (1). That is, the data have labels, y, and the task is to output
a classifier parameterized by the random vector w, which, when combined with an observed
x, maps to the correct label y. In this set up not every example has a corresponding label,
giving the general framework of binary classification in the presence of missing values. Let
L be an index set for the labeled data Di, and U be an index set for the unlabeled data D\L
The dependencies shown in the model above allows us to use the additional observed values
g to train a discriminative classifier using the unlabeled data. We note that because of the
d-separation of w and gi by yi, it is unnecessary to learn a maximum likelihood solution for
w if the labels are observed. However, if the label, y j, is missing, then observing g j makes w
and x j conditionally dependent, having the common observed ancestor, seen in Figure (1),
so that unlabeled data are useful. If the relationship between y j and g j is tightly coupled,
then g j may be thought of as a noisy label. The general idea is that g j be a variable which is
far easier to obtain than the true label, y j. The above model can be learned using a variational
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approach [13], in which the objective is to maximize the log marginal distribution

log p(D) =
∫

Z
q(Z) log

p(D,Z)
q(Z)

dZ+KL(q||p) = L(q)+KL(q||p) (1)

where Z are the latent variables. Treating the parameter w as a hidden as well, Z = {w,(y j){ j∈U}}
and D = {(yi)i∈L,g,X}. Since KL(q||p) ≥ 0, L(q) ≤ log p(D) and maximizing L(q) in (1)
with respect to the distribution q(Z) is equivalent to minimizing the KL divergence KL(q||p).
As is typically the case in variational inference [1], in what Gharamani and Beal term the
variational approach, [6], we let q(Z) factorize with respect to each y j for j ∈U , and w as
disjoint sets. That is, q(Z) = q(w)∏ j q(y j). Expanding the terms according to the graphical
model we have above, we see that the objective is to maximize L(q), which decomposes into
expectations over the unlabeled and labeled data, so that we can expand the above to give

L(q) = Llabeled +Lunlabeled (2)

=
∫

w
q(w) log

∏i∈L p(yi|xi,w)p(w)
q(w)

dw

+
∫

w
∑

yL+1
∑

yL+2

...∑
yU

q(w)∏
j

q(y j) log
∏ j∈U p(g j|y j)p(y j|x j,w)

∏ j q(y j)
dw. (3)

The first term can be seen as the expectation of Ew[log p(Dl)]+H[q(w)]. The second term
encapsulates |U | KL divergence-like terms. To make this clearer, we can rewrite the second
term as

Lunlabeled = ∑
j
∑
y j

q(y j)
∫

w
q(w) log

p(g j|y j)p(y j|x j,w)
q(y j)

dw (4)

In the notation of [17], [4], this is very close to the Generalized Expectation Criteria (GEC)

−D(g̃xy||E{Z\y j}[p(y j|x j,Z)G(x j,y j)]), (5)

where G(x,y) = p(g j|y j), p(y j|x j,Z) = p(y j|x j,w), and g̃xy is the distribution q(y j). How-
ever, here, we maximize Ew[log p(g j|y j)p(y j|x j,w)], rather than logEw[p(g j|y j)p(y j|x j,w)],
which is an upper bound. The unlabeled data acts as a regularization penalty on a quantity
close to the divergence between the variational distribution ∏ j q(y j) and the expected distri-
bution of the data under q(w). The extension of these quantities to more general constraint
functions G(x j,y j) is the primary contribution of the GEC. However, we note that if G(x j,y j)
is a probability distribution, it can also be interpreted as a variational distribution.

Null Category We treat the null category as in [15] as an additional Y -label which takes the
value zero. This makes the classification, multiclass, where Y ∈ {1,−1,0}. If p(Y = 0) = 0
when the label is unobserved, the null class will provide a probabilistic “margin”, pushing
the decision boundary away from unlabeled examples. We extend this intuition by relaxing
this restriction and allowing p(Y = 0) to be non-zero, yielding a soft margin.

Here, we assume that g is an informative weak label – the unlabeled data is labeled with
the class having the larger proportion. We also make the assumption that the unlabeled data
will be skewed in favor of the positive class. It is possible to model for varying weak labels
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as well, the assumption is made here for simplicity. Treating the distribution p(g j|y j) as a
multinomial, let

p(g j = 1|y j) =


µ+ if y j = 1,

µ− if y j =−1,

µ0 = 1−µ+−µ− otherwise, if y j = 0
(6)

Let µ = (µ+,µ−) be a vector of weights which serve as a bias for each class, much like class
priors. Assuming that the model is symmetric, that is, p(g j =−1|y j =−1) = p(g j = 1|y j =
1) , the above specifies a proper distribution. Furthermore, this distribution is normalized
by Z−1 = (1 + exp(µ+) + exp(µ−))−1. Letting p(yn|xn) also be a soft max function of
w, (multinomial logistic regression) with zn a binary vector of indicator functions, zn =
(1{yn=1},1{yn=−1},1{yn=0})T , then the joint distribution can be expressed as

p(D,{y}) = ∏
i∈L

∏
c

exp(wT
c φ(xi))zic

Ci
∏
j∈U

∏
c

exp(wT
c φ(x j)+ z jcµc)z jc

C jZ j
(7)

where c indexes the class labels {1,−1,0}. Here, C−1
i normalizes ∏c exp(wT

c φ(xi))zic . In
the case of the labeled data, Ci = ∑c6=3 exp(wT

c φ(xi)), as p(yi = 0|x,w) = 0, by assumption.
φ is a transformation function, and in the case of kernel logistic regression, a vector of kernel
basis functions, that is, φ(xi) = (K(xi,x j)){ j=1,2,...,N}. Again, 1{yi=0} = 0 for all i ∈ L.

Furthermore, we model the distribution of wcn with a zero-mean Gaussian prior, as in the
Relevance Vector Machine (RVM) [21], except that instead of the the gamma hyperprior, as
used in Bishop and Tipping’s variational approach [2], we use an Exponential hyperprior for
the variance parameterized by γ

2 . This can be shown to result in an Exponential prior, which
approximates an L1 penalty, as opposed to an L2 penalty which will not generally yield sparse
w, and provides more shrinkage than the L0 approximating penalty of the RVM [14]. More
formally, we let wnc ∼ N(0|αnc), and αnc ∼ Exp( γ

2 ), for all n and all classes c. We note that
the form of the objective results in an RVM-like formulation of a semi-supervised learning
algorithm. The inclusion of the Exponential hyperprior results in intractable expectations in
the variable w; we use the Exponential hyperprior because it was observed to lead to accurate
and sparse classifiers. The expanded joint likelihood can then be written as

∏
nc

N(wnc|0,αnc)exp(−γ
2

αnc)∏
i∈L

(
∏c exp(wT

c φ(xi))
Ci

)zic

∏
j∈U

(
exp(wT

c φ(x j)+ z jcµc)
C jZ j

)z jc

.

(8)
As α = (αnc)n=1,2,...,N,c=1,2,3 represents hidden variables as well, we augment (2) with an
additional variational distribution q(α) = ∏q(αnc). Now, plugging (8) into (2), we obtain
the objective function as L(q). However, for reasons mentioned above, we treat w as a
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parameter to L(q), that is L(q,w) =

∑
i

∑
c

zicwT
c φ(xi)−∑

i
logCi

+
∫

q(α)
(
− 1

2 ∑
nc

log(αnc)−∑
nc

1
2

α−1
nc w2

nc−
γ
2 ∑

nc
αnc

)
dα

+
|U |
∑

j=|L|+1
∑
y j

q(y j)
(

∑
c

z jcwT
c φ(x j)+ z jcµc−

|U |
∑

k=|L|+1
log(CkZk)

)

−
|U |
∑

j=|L|+1
∑
y j

q(y j) logq(y j)−
∫

q(α) logq(α)dα (9)

The first term can be thought of as the log likelihood of the labeled data, the second term
as a prior or regularization term. The third term is the effect of the unlabeled data, or as an
additional regularization term which takes into account the prior likelihood of the classes.
The final two terms penalize the entropy of the variational distributions.

Expectation The distribution q(y j) can be found by noting that the bound is tightest when

q(y j) ∝ ∏
c

exp(wT
c φ(x j)+ z jcµc)z jc (10)

So that the factorized distribution for each y j unlabeled is given by

q(y j) =
exp(wT

c φ(x j)+ z jcµc)z jc

∑c exp(wT
c φ(x j)+ µc)

(11)

As the expectation of an indicator function is a probability, we have that EZ\y j [z j] = (q(y j =
1),q(y j =−1),q(y j = 0)). Meanwhile, the distribution of αn is

q(αnc) ∝ α− 1
2

nc exp(−1
2
(γαnc +w2

ncα−1
nc )) (12)

Changing variables, let τnc = α−1
nc , resulting in the distribution

q(τnc) ∝ τ−
3
2

nc exp(−1
2
(γτ−1

nc +w2
ncτnc)), (13)

which is an inverse Gaussian distribution with mean
√γ
|wnc| , and shape parameter

√γ|wnc| [3].

Maximization As noted, the choice of hyperprior leads to intractable expectations, and as
such, we estimate a mode of p(w). Using 〈.〉 to denote an expectation, the gradient of the
marginal distribution log p(D) with respect to the vector wk, can be written as

∇(wk)L(q,w) = ∑
n
〈znk〉φ(xn)−∑

n

exp(wkφ(xn))
Cn

φ(xn)−〈Tk〉wk, (14)

where Tk is the n by n diagonal matrix of expectations diag(〈τnk〉). The gradient is a standard
kernel multinomial logistic regression MAP optimization except that the indicators for the
unlabeled data are replaced by expectations, in this case, q(y j) (with some abuse of notation,
we let 〈zi〉 for i∈ L be zi.) We use an IRLS method with the above to maximize the parameter
w. To monitor convergence, we track the increase in the objective function (9), at each
iteration until convergence.
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SVM KLR + Noisy Labels
Held out Accuracy SE Accuracy SE
All but 1 0.236 0.014 0.603 0.012
0.9000 0.449 0.012 0.610 0.004
0.7500 0.604 0.013 0.651 0.004
0.5000 0.709 0.013 0.754 0.001

Table 1: Accuracy using different proportions of labeled and unlabeled data using a known weak label
accuracy parameter. The held out column presents the percentage of data used as unlabeled data. For
our method, γ and µ0 were set to 1 and .50, respectively, i.e.. µ+ = .75(1−µ0).

Testing As the algorithm may not be supported with weak labels at test time, a prediction
is based on assuming that a test example is not unlabeled. The probability is then given
by the two vectors of weights w+ and w−, which can be combined into a binary classifier
p(y = 1|x) = 1

1+exp(−ŵT φ(x)) , where ŵ = w+−w−, as p(y = 0|x) = 0, by assumption. Note
that instead of integrating over parameters as would be the case in a fully Bayesian procedure,
we use the MAP estimate w recovered from the above algorithm for computational reasons.

3 Experiments
Labeled Faces in the Wild To test the accuracy of our method under a known weak label
accuracy level, we created a subset of the LFW dataset using the 50 subjects having the most
labeled examples, yielding 2733 total labeled examples. As in [24], we combine this set
with 4000 negatives drawn from the remaining subjects having as least 3 examples, a subset
of 6733 examples from LFW. We tested the algorithm using varying amounts of labeled
examples by holding out a percentage of each subject’s images, and creating a synthetic
unlabeled set with 75% accurate weak labels.

The data in Table (1) shows the results of using a linear kernel with the LBP features
as input for each held-out regime, with parameters determined by cross-validation. The
results indicate that a significant increase in accuracy is possible using unlabeled data, es-
pecially in the case where only a very small number of positive labels are available. The
additional improvement decreases as the ratio of labeled training examples to unlabeled ex-
amples increases. However, at a known level of weak label accuracy, the improvement is still
significant, indicating that additional labeled data may be approximated by large amount of
weakly labeled data. Note that the best accuracy was not at a value of µ0 = 0, as would be
the case with hard-constraints.

Youtube Video Using the subset of subjects created in the above section, we used the
corresponding names for these individuals to download a set of videos from YouTube. In
order to obtain videos likely to contain additional faces of interest the full name of each
subject was issued as a query, e.g. “George W Bush". We downloaded a maximum of thirty
videos ranked by YouTube’s search for each subject. This procedure resulted in 1277 videos
comprising 28.8GB of data.

To avoid returning near duplicates, we collect faces contained in key frames using the
ffmpeg [5] and MEncoder tools, employing the OpenCV implementation of the Viola-Jones
face dectector to detect and localize faces [8], [22]. To retain high resolution in the resulting
face images, we search for faces sized at least the maximum of 45% of the height of the video
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or 109×109. Each of the positive face detection is cropped and rescaled following the iden-
tical procedure as in LFW[9]. After processing these 1277 videos, a total number of 42,255
faces were extracted. False negative face detections were filtered out by running a eye-pair
detector on the extracted faces, again provided by OpenCV [8], resulting in 25,726 faces.
We then aligned the face images extracted from the videos using the funneling methodology

(a) A sequence of faces de-
tected by the V. and Jones face
detector

(b) The sequence after eye-pair filtering, alignment and cropping

Figure 2: The pipeline output for one of Winona Ryder’s videos

utilized by Huang et al. [10] for the LFW database. Following [23], the images were then
cropped to a 110× 115 window around its center and converted to grayscale. An adaptive
noise removal filter (wiener2) was used for noise removal and the denoised images were nor-
malized such that 1% of the pixels at the both the highest and lowest ends are saturated. For
each of the preprocessed quality faces, we compute the LBP, [19], FPLBP and TPLBP as de-
scribed in [24], and concatenate them into a single feature vector. The pipeline is described
visually in Figure (2).

We test the model using a small amount of labels for each video to estimate the weak-
label parameters µ , labeling 4,473 random images of the available 20,765 facial images by
random sampling. The sampling procedure provides 2,369 additional positive examples for
50 subjects. We use the label proportions of the sampled data and regress these estimates
to the global mean of 53%. We note that this effectively provides a prior to the binomial
distribution centered on the mean. We combine these estimates with a relatively large margin
size of 50%, to yield a multinomial distribution. To test our procedure in this case, we
trained a linear SVM on features derived only from the labeled Youtube face images and
evaluated on testing samples of 100 images comprised of two images for each subject. The
training and testing were again run 10 times across different train/test splits, resulting in an
accuracy of 81.6%. The same experiment was repeated using a Gaussian kernel resulting
in a lower accuracy of 78.0%. The γ parameter in the Gaussian kernel was found by cross-
validation over a grid. We then use our method and the unlabeled facial images for each
subject and a null category probability µ0, of 75%, yielding accuracies of 75.6% and 85.8%
respectively for the linear and Gaussian kernels, respectively. The results seem to indicate
that training with a lower number of labeled examples is prone to over-fitting, requiring the
use of a more restricted class of classifier, i.e.. linear classifiers. However, in the presence
of a higher number of examples in the semi-supervised case, the linear classifer under-fits,
and the more flexible Gaussian classifier is regularized appropriately by the unlabeled data.
Table (2) summarizes these results. We then hypothesized that adding the Youtube facial
images to the LFW dataset would yield increased performance using our model based on the
larger number of positive examples in the unlabeled set, but would require a more flexible
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SVM KLR + Noisy Labels
Kernel Accuracy SE Accuracy SE
Linear 0.816 0.019 0.770 0.015

Gaussian 0.780 0.009 0.858 0.012

Table 2: Accuracy on the Facial Images Recovered from Youtube (tested on Youtube data)

SVM KLR + Noisy Labels
Kernel Accuracy SE Accuracy SE
Linear 0.781 0.007 0.646 0.016

Gaussian 0.763 0.035 0.818 0.013

Table 3: Accuracy on the LFW augmented with Youtube Data (tested on LFW examples)

classifier. The baseline experiment, as described previously is a linear classifier trained using
all but 2 of the available labeled LFW images, which were used for testing. These were
combined with the labeled examples from the Youtube data. Both a linear and Gaussian
SVM were trained using only the labeled data, and then our method was used by adding the
remaining unlabeled Youtube images. Again, this set of experiments was repeated 10 times
over differing train/test splits. Similar to the Youtube only experiments, it is apparent that the
more flexible Gaussian kernel is preferable in the semi-supervised case. The linear kernel
case indicates under-fitting. The results are presented in Figure (3). We repeated the above
experiment on a final task, to attempt to combine static images with unlabeled video images
in order to better classify the video images, i.e.. we train using the same dataset but test on
video images. The same behavior is again apparent, with the unlabeled data helping to create
a better classifier for the video, as shown in Table (4). We note that we prohibited training
on images drawn from videos present in the test set.

4 Conclusions and Future Work
Although the gain in some of the experiments described in the previous section is moderate,
we believe this is largely due to domain differences. Facial images drawn from the LFW
dataset are derived from static news images which contain mostly rectified faces usually
centered in the photo.The facial images drawn from Youtube exhibit quite a large amount of
variability due to differences in environment and compression artifacts. A direction for future
work would include attempting to account for the differences. Computationally, we recog-
nize the limitations of kernel methods with non-convex objectives, specifically the O(n3)
overhead of generating kernel matrices. Much of the computational overhead, however, can
be parallelized using modern GPGPU-based methods, including construction of Hessian ma-
trices and matrix inversion required for the IRLS updates. The optimization converges very

SVM KLR + Noisy Labels
Kernel Accuracy SE Accuracy SE
Linear 0.823 0.004 0.710 0.018

Gaussian 0.775 0.010 0.861 0.005

Table 4: Accuracy on the LFW augmented with Youtube Data (tested on Youtube examples)
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quickly in IRLS updates, usually fewer than four iterations. We further note that the use of
a subject noise level does not preclude using per example noise estimates. That is, we have
used a per subject estimate of the accuracy of the weak label. We believe that using a per
example noise estimate determined by using text data derived from video meta-data, such as
a video description and date, as well as other features of the video should yield better results.
We have explored the idea of using these alternative sources as a way of incorporating more
complex prior data in the future.

However, we have shown the overall effectiveness of using weak labels derived from
video data combined with existing facial images to aid learning tasks. Noisy labels are
readily available in video for faces using this method. Adding a null-category with soft con-
straints produces better results than using the labeled data alone. In all cases, the use of
unlabeled data is able to improve the final classifier. The model is fully probabilistic and
gives greater flexibility including the use of non-standard priors, most specifically sparsity-
inducing priors. Going beyond experiments with a known noise level, using a realistic dataset
and an estimate of the noise yielded improvement as well. On a realistic task of interest, im-
proving a static face classifier using readily available video images, the method also produces
good results.
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