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Abstract

We present a novel generative framework for learning parts-based representations of
object classes. Our model, Factored Shapes and Appearances (FSA), employs a highly
factored representation to reason about appearance and shape variability across datasets
of images. We propose Markov Chain Monte Carlo sampling schemes for efficient in-
ference and learning, and evaluate the model on a number of datasets. Here we consider
datasets that exhibit large amounts of variability, both in the shapes of objects in the
scene, and in their appearances. We show that the FSA model extracts meaningful parts
from training data, and that its parameters and representation can be used to perform a
range of tasks, including object parsing, segmentation and fine-grained categorisation.

1 Introduction
One of the long-standing open problems in machine vision has been the task of foreground-
background segmentation, in which an image is partitioned into two sets of pixels: those that
belong to the object of interest in the foreground, and those that do not. There is broad agree-
ment that this task is coupled to that of object recognition. Knowledge of the object’s class
can lead to more accurate segmentations, and in turn accurate segmentations can be used to
obtain higher recognition rates. In this paper we focus on one side of this relationship; given
the ground truth value of the object’s identity in an image region specified by a bounding
box, how accurately can we segment that image?

There is a rich history of work on probabilistic models that segment by only considering
low-level, pairwise pixel statistics e.g. [5, 27]. To see why this type of approach is not
sufficient on its own, one only has to examine the kinds of images that these models find
difficult to segment. Errors can typically be attributed to a lack of high-level, cross-image
understanding about the object in question. When the object’s pixel intensities are near
constant in the dataset (e.g. in videos), statistics of its appearance have been used to guide
segmentation [7, 8, 12, 28]. However for many datasets of interest the foreground object’s
appearance is too variable to be modelled effectively by these methods. Recently, a number
of models have been proposed that obtain more accurate segmentations by incorporating
prior knowledge about the foreground object’s shape instead [4, 14, 17, 18, 20, 21, 29]. In
such cases, probabilistic techniques mainly differ in how accurately they represent and learn
about the variability in the object’s shape.
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Though advances have recently been made for handwritten digits [15] and human silhou-
ettes [16], the task of learning accurate distributions of holistic shape in general still remains
a challenging and open problem. One natural approach to this problem is the parts-based one
in which the variability of the object’s shape is reasoned about in terms of the relationships
of its constituent parts [3]. The main idea behind such approaches is that the parts combine
factorially in some way to generate the object’s shape [4, 11, 21, 23]. The challenge pre-
dominantly lies in two areas: 1) how the object’s parts are extracted from data and 2) how
they combine to generate the whole. Additionally, much of the existing research in this area
is focused on learning parts-based representations of datasets that exhibit limited variability
in either shape [17, 26] or appearance [19, 21], or are applicable only to small patches [22].

The main contributions of this paper are as follows: 1) We present a novel image repre-
sentation that is parts-based, and learns from datasets that exhibit variability in both shape
and appearance. Our experiments on a variety of datasets demonstrate the advantages of
FSA’s explicit modelling of part deformations over related methods. 2) We demonstrate that
the model’s latent representations can be interpreted as ‘parsings’ of images, and show that
these parsings are accurate enough to be used for tasks like fine-grained categorisation. 3)
We apply FSA to the foreground-background segmentation task, and find that even without
CRF-style pixelwise dependency terms its performance is comparable to that of the state-of-
the-art on a number of benchmark datasets.

In Secs. 2 and 3 we present FSA and propose an efficient inference and learning scheme
for the model. In Sec. 4 we explain how FSA generalises and extends previous work in the
field. We provide an experimental evaluation of the model in Sec. 5 and conclude with a
discussion in Sec. 6.

2 The FSA generative model
In FSA we consider datasets of images of an object class. We assume that the images are
constructed through some combination of a fixed number of parts (which can alternatively
be thought of as layers). Given a dataset D = {Xi}, i = 1...n of such images X, each
consisting of D pixels {xd} in some feature space, we wish to infer a segmentation S for
the image. Each segmentation consists of a labelling sd for every pixel, where L is the fixed
number of parts that combine to generate the foreground and sd is a 1-of-(L + 1) encoded
variable. In other words, sd = (sld), l = 0...L, sld ∈ {0, 1} and

∑
l sld = 1. Note that the

background is also treated as a ‘part’ (l = 0). Accurate inference of S is driven by FSA’s
models for 1) part shapes and 2) part appearances. In the following sections we describe how
the two components are defined.

Shape: Let ml be a collection of real numbers of the same size as the image, densely rep-
resenting the model’s preference for part l’s shape at each location. These ‘masks’ combine
via a softmax-like activation function to generate the segmentation S. Let

σld =
exp{mld}

L∑
k=0

exp{mkd}

, (1)

then the distribution on the labelling of pixel d, p(sld = 1|θ), is given by ε+(1−Lε−ε)·σld.
Here ε is a parameter that helps prevent over-confident predictions by ‘smoothing out’ the
distribution imposed by the model on segmentations.
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In order to be able to allow for part shape variability, the model is designed to capture
a distribution over ml, l = 1...L (m0 is fixed to equal 1). Specifically, the probability
distribution over ml is defined by a Factor Analysis-like model:

ml = Flv + cl, p(v) = N (0, IH×H). (2)

Here v is an H-dimensional latent variable, Fl is a D × H matrix analogous to the factor
loading matrix in Factor Analysis literature and cl is the mean mask. An L1-norm prior on
F is used to reduce the amount of noise in its values.

We additionally consider an alternative shape variability model in which we use separate,
H̄ dimensional latent variables vl for every part (H = L × H̄). This local model can be
thought of as a special case of the global model presented earlier, in which most of the
columns of each Fl are forced to equal 0. The local model is useful in cases where we
believe the shapes of any two pairs of parts in the data to be independent (e.g. the pose of
upper and lower parts of human bodies), and we wish to explicitly build this knowledge into
the model.

k = 1 k = 2 k = 1 k = 2

background (l = 0) foreground (l = 1)

Figure 1: Appearance modelling: Given a dataset of images and their segmentations, we
construct a model of the parts’ appearances. Left: The dataset. The foreground and back-
ground appear with 2 different styles. Right: The corresponding appearance model. The
top row depicts πl for the two parts and the bottom row depicts φl. In this example, L = 1,
K = 2 and W = 5.

Appearance: Pixels corresponding to each part in a given image are assumed to have been
generated by W fixed Gaussians in feature space (in this paper we only use Lab colour fea-
tures). In the pre-training phase, the means {µw} and covariances {Σw} of these Gaussians
are extracted by training a Gaussian mixture model with W components on every pixel in
the dataset, ignoring image and part structure. It is also assumed that each of the L parts have
different appearances in different images, and that these appearances can be clustered intoK
classes. The classes differ in how likely they are to use each of the W Gaussian components
when ‘colouring in’ the part.

The generative process is as follows. For part l in a given image, one of the K classes is
chosen (represented by a 1-of-K indicator variable al). Given al, the probability distribution
defined on pixels associated with part l is given by a Gaussian mixture model with means
{µw} and covariances {Σw} and mixing proportions {φlkw}. Therefore the distribution on
the image pixel values is given by

p(xd|A, sd,θ) =

L∏
l=0

p(xd|al,θ)sld =

L∏
l=0

(
K∏

k=1

(
W∑

w=1

φlkwN (xd|µw,Σw)

)alk)sld

(3)
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The prior on A = {al} specifies the probability of each appearance class being selected
for the parts in any given image:

p(A|θ) =

L∏
l=0

p(al|θ) =

L∏
l=0

K∏
k=1

(πlk)alk . (4)

See Fig. 1 for an illustration of the appearance model. In our experiments the model typically
performs best when K ' 10, and W ' 30. We additionally place a hyper-prior on φ of the
form p(φ) ∝ exp{−E(φ)} where

E(φ) =

L∑
l=0

λself ·
K∑

k=1

H(φlk)− λothers ·
∑
m 6=l

DKL(φl ‖ φm) +DKL(φm ‖ φl)

 . (5)

Here H(φlk) is the entropy of the distribution defined by φlk (similar to that used in [6])
and DKL(φl ‖ φm) is the Kullback-Leibler divergence from the distribution defined by φl

to that defined by φm. This hyper-prior encourages settings of φ that define distributions on
the appearance components that are 1) low-entropy, and 2) dissimilar from each other, and
can be very effective in accelerating convergence of the parameters during training. Suitable
values of λself and λothers are found through trial and error.

m0

m1m2

0

1

(a)

0 1 2

A

S

X
(b)

0 1 2

A

S

(c)

Figure 2: Lazy occlusion reasoning: (a) Given the image X, the masks are deformed to their
most likely states. In this example, the model has learned that the cross and square always
appear in front of the background and that they are equally likely to be in the foreground.
The highlighted pixels (red) are equally likely to belong to either shape at this stage. (b) One
setting of A and S that can explain X. Note the two-tone appearance for part 1. (c) The
most likely setting of A and S. Out of all such competing segmentations, the most likely S
is the one for which the corresponding choice of appearances is most probable.

Handling occlusion: Instead of modelling part occlusion using an explicit random variable,
FSA captures knowledge about part-ordering implicitly in the shape parameters. By increas-
ing the magnitude of mld for a particular l, the model can capture the increased likelihood of
part l occluding other parts at pixel d. In cases where the multiple parts are equally likely to
occlude each other, the appearance model is used to resolve this ambiguity in the posterior.
See Fig. 2 for an illustration of this effect.

Combined model: To summarise, the latent variables Zi for image Xi are Ai, Si and vi, the
model’s active parameters θ include shape parameters θs = {{Fl}, {cl}} and appearance
parameters θa = {{πlk}, {φlkw}}, and

p(Xi,Ai,Si,vi|θ) = p(vi) p(Ai|θa)

D∏
d=1

p(sd|vi,θs) p(xi
d|A, sid,θa). (6)
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See Fig. 3 for an illustration of the complete FSA graphical model. During learning, we
find the values of θ that maximise the likelihood of the training data D, and segmentation is
performed on previously-unseen image by querying the marginal distribution p(S|Xtest,θ).

v sd θs

θa al xd

DL

n 0 1 2 0 1 2

vi Si

XiAi

Figure 3: Left: Directed graphical representation of the global FSA model. Pixel intensities
xd are modelled via L appearance random variables (al). The model’s belief about each
part’s shape is captured by a latent variable (v). Segmentation random variables (sd) assign
each image pixel to a part. Right: Schematic diagram of the model for a single image Xi.

3 Inference and learning
We use the expectation-maximisation (EM) algorithm to find estimates of the maximum
likelihood parameters. For the E-step, we wish to find p(Z|X,θ) = p(A,S,v|X,θ).
However, the exact evaluation of this distribution is intractable. Instead we approximate
p(A,S,v|X,θ) by drawing samples of A, S and v using block-Gibbs Markov Chain Monte
Carlo (MCMC).

The appearance variable Ai is sampled given each image Xi and its corresponding seg-
mentation Si. The conditional distribution of appearance class k being chosen for part l (i.e.
the binary variable alk being set to 1) is given by:

p(alk = 1|S,v,X,θ) =

πlk

D∏
d=1

(
W∑

w=1

φlkwN (xd|µw,Σw)

)sld

K∑
k=1

[
πlk

D∏
d=1

(
W∑

w=1

φlkwN (xd|µw,Σw)

)sld] . (7)

The segmentation variable Si is then sampled given vi and Ai. It can be shown that the
conditional distribution of the segmentation factorises over the pixels in the image. The
probability of pixel d being associated with part l is:

p(sld = 1|A,v,X,θ) =
p(sld = 1|v,θ) p(xd|A, sd)

L∑
m=1

p(smd = 1|v,θ) p(xd|A, sd)

. (8)

Finally, vi is sampled given the segmentation Si. To do this we use an efficient elliptical slice
sampling scheme [24]. In each iteration of the top-level block-Gibbs sampler, the sample for
vi is set to equal the mean of the samples returned by the elliptical slice sampler after a
burn-in period.

Citation
Citation
{Murray, Adams, and MacKay} 2010



6 ESLAMI, WILLIAMS: FACTORED SHAPES AND APPEARANCES

For the M-step we are looking to find arg maxθ Q(θ,θold), where

Q(θ,θold) = ln p(θ) +

n∑
i=1

∑
Zi

p(Zi|Xi,θold) ln p(Xi,Zi|θ). (9)

To do this, we compute the derivative of Q with respect to θa and θs. The gradients are
used in a numerical optimisation routine to find the settings of the parameters at which
Q is maximised. We use independent scaled conjugate gradients (SCG) routines to up-
date the shape and appearance parameters. Note that special care needs to be taken to en-
sure that the π and φ variables sum to 1. We re-parametrise the model such that πlk =
exp{αlk}/

∑K
c=1 exp{αlc} and φlkw = exp{βlkw}/

∑W
v=1 exp{βlkv}, and optimiseQwith

respect to α and β instead.

4 Related work
Existing parts-based image models can be categorised by the amount of variability they ex-
pect to encounter in the data and by how they model this variability. For example, in the
Layered Subspace Manifold (LSM) of Frey et al. [12] videos are partitioned into layers that
translate independently of each other. The layers exhibit limited shape and appearance vari-
ability from frame to frame, and are modelled using Factor Analysers and a fixed, explicit
occlusion ordering. With the Sprites model [28], Williams and Titsias show how such lay-
ered models can be efficiently learned one layer at a time, however they do not model shape
or appearance variability. By contrast, FSA is designed to work on datasets of images that ex-
hibit significant shape and appearance variability from image to image, and does not impose
any layer ordering into the model.

With Multiple Cause Vector Quantisation (MCVQ) [26], Ross and Zemel present an
alternative part-based representation of images. The model learns a fixed partitioning of the
image, and it is assumed that a fixed number of appearance templates generate the pixels
within each part. When applied to highly variable data, the model finds it difficult to learn
meaningful parts as it can only make very limited variation in the partitionings from image
to image. The authors also present Multiple Cause Factor Analysis (MCFA), which uses a
Factor Analysis model for part appearances, however this remains too restrictive for most
datasets of interest. By contrast, FSA explicitly models the variability of pixel assignments
to parts, therefore learning sharp partitions, and it models part appearance variation in a more
flexible way.

Table 1: Comparison of a number of different parts-based models.

FACTORED FACTORED SHAPE SHAPE APPEARANCE
PARTS AND APPEARANCE VARIABILITY VARIABILITY

LSM [12] X(layers) - X(FA) X(FA)
Sprites [28] X(layers) - - -
LOCUS [29] - X X(deformation) X(colours)
MCVQ [26] - X - X(templates)
SCA [18] - X X(convex) X(histograms)

FSA X(softmax) X X(FA) X(histograms)
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The closest works to ours are LOCUS [29] and Stel Component Analysis (SCA) [18].
In the basic formulation of LOCUS, the model uses only one ‘part’ to account for the fore-
ground object, but this restriction can be relaxed with the deformable probabilistic index
map (dPIM) [29]. Shape variability between images is accounted for using a deformation
field that warps the partitioning to fit each image. Since the formulation imposes only local
smoothness constraints on deformations, samples from the model in the absense of an image
are unlikely to capture global properties of the object in consideration (e.g. pose of a horse).

The SCA model, on the other hand, accounts for shape variability by learning a fixed
number of templates for each part. The templates are restricted such that any pixelwise,
convex combination of templates results in a valid probabilistic index map (i.e. one in which
the probabilities of part assignments for each pixel sum to 1). The SCA distribution over
segmentations is accurate only in the posterior – in the absence of an image, the defined dis-
tribution over segmentations is ‘blurry’. Thus samples of partitionings generated by LOCUS
and SCA will not have much resemblance to their training images, even though the are both
generative models of image partitionings.

In FSA part shapes vary accurately even in the prior and segmentations randomly sam-
pled by the model are similar to those found in the training data. Additionally, both LOCUS
(with dPIMs) and SCA define global distributions over partitionings that do not factorise
over part shape. In FSA parts can be modelled independently of each other allowing further
developments to be made by incorporating specialised part models that concentrate on the
shape, position and scale of each individually. We summarise these differences in Table 1.

5 Experiments
FSA, as a generative model for images of objects, can be used to accomplish a variety of
tasks in computer vision. Here we demonstrate its performance on several datasets. FSA
segments all images across the dataset simultaneously to learn a parts-based object model.
In addition to the segmentations made by the algorithm, we inspect the parameters learned
by the model. We show that these parameters form an intuitive reflection of the algorithm’s
‘understanding’ of the object class.

Cars dataset: The first real dataset we consider1 contains 20 images of cars that have
been downloaded from a manufacturer’s website2. In addition to appearance variability,
the cars exhibit significant shape variability across the dataset (e.g. hatchback, SUV, convert-
ible coupé, saloon, estate). The segmentations inferred by an unsupervised FSA model with
L = 3 and H = 2 are shown in Fig. 4(a).

It is informative to inspect how the latent v variable is projected by Fl and cl into masks
for the parts. In Fig. 4(b) we plot columns of one of the F matrices, and in Fig. 4(c) we
plot the car body’s mask for a grid of v values in 2-dimensional latent space. Notice how
FSA learns a model of shape that gradually morphs between the parts’ possible outlines. In
doing so it learns a model of object class shape that is more informative than just a mean3.
Also note that the model learns a mask for the roof-less ‘convertible-coupé’ body type. A
deformation field like the one used in LOCUS [29] would find this kind of variability difficult
to represent. Finally, we observe that the inferred vs can be used as discriminative indicators

1See supplementary material for illustrative results on synthetic data.
2http://bmw.com
3See supplementary material for samples from a supervised FSA model on the same dataset.
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(a)

(b)

+3 0 -3
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0
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Figure 4: (a) A subset of the training images with their inferred segmentations. Distinct
colours indicate assignments of pixels to different parts. (b) Hinton diagrams of the two
columns of F2 corresponding to the car body (cyan). (c) A plot of the joint segmentation for
a grid of v values in 2D latent space. Prototypical shapes of 4 of the different car types have
been highlighted in red.

of the object’s type. In our experiments, using a leave-one-out SVM classifier on only the
inferred vs, we can classify the cars into the 5 distinct categories with 100% accuracy.

Other datasets: We apply the FSA model to a number of other datasets including 100
MIT pedestrians [25], 200 UMIST faces [13] and 127 Caltech motorbikes [9], as well as
138 images of dresses obtained from a fashion retailer’s website4,5. The results of these
experiments can be seen in Fig. 5. The model does a good job of learning about class shape
across the dataset. In our experiments we observed that it uses this information effectively
to guide inferences for more difficult images that cannot be segmented based on appearance
cues alone. The fact that it has the flexibility to learn about shape deformations increases
its chances of transferring shape information in a useful way. For example, having correctly
learned about the shape of a human in an unusual pose in an image with strong appearance
cues, the model uses this information to correctly segment more difficult images of humans
with the same pose. The mean pose in this case would do more harm than good in providing
cues for segmentation.

Segmentation accuracy: We additionally evaluate the performance of the FSA model at
segmenting the Weizmann horse [4] and Caltech4 [10] datasets, where the ground truths are
readily available. The train-test split for the datasets were as follows. Weizmann horses:
127-200; Caltech cars: 63-60; faces: 335-100; motorbikes 698-100 and airplanes: 700-100.

The baseline we consider is the batch GrabCut algorithm described by Alexe et al. [1].
GrabCut is initialised by training a foreground colour model on the central 25% of each test
image and a background colour model using the remainder of its pixels. In supervised FSA,
training is performed given the ground-truth segmentations for each image (L = 1).

The results of these experiments can be seen in Table 2. For comparison we also include
accuracies reported by Borenstein et al. [4] (supervised), Winn and Jojic [29] (unsupervised,
colour model) and Alexe et al. [1] (unsupervised). FSA uses knowledge about shape to in-
crease the average accuracy over the baseline. The discrepancy with LOCUS and Borenstein
et al.’s approach on the Weizmann dataset is likely due to the lack of low-level edge features
in our implementation of FSA. Supervised FSA outperforms the other models on the face
and motorbike datasets, in part due to the way in which it learns to classify pixels belonging

4http://marksandspencer.com
5Pedestrians: L = 3, H = 2; faces: L = 2, H = 2; motorbikes: L = 3, H = 20; dresses: L = 1, H = 5.
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(a) (b) (c)
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Figure 5: (a) Training images. (b) Partitioning learned by an FSA model with no shape
deformation component (equivalent to a PIM). Distinct colours indicate probabilities of as-
signments of pixels to different parts. (c) A selection of samples from complete FSA models.
Notice in row 1) captured variability of clothing styles and leg separation, 2) body poses, 3)
face highlights and hair styles, and 4) motorcycle types. (d) Samples from the FSA pedes-
trian and face models as v moves on a 1D line in latent space. Notice how, for example, v
affects the size of the forehead and the length of the hair.

to necks as background and motorbike spokes as foreground. Even though the FSA model
does not have CRF-style pixelwise dependency terms, its performance is comparable to that
of state-of-the-art methods for these datasets.

6 Discussion and future work

In this paper we have presented a novel probabilistic model of objects that learns by simulta-
neously segmenting all images in the training dataset. The model is parts-based and factorial:
each of the parts can be modelled independently of the others. The model’s descriptors for
shape and appearance are particularly well suited to highly variable datasets of images. We
have demonstrated that FSA can perform as intended across a range of datasets, and that its
latent representation can be used to accomplish a variety of common computer vision tasks.

We are currently investigating the ways in which FSA’s latent representation of part shape
can be used for the fine-grained visual categorisation task, where the goal is to distinguish
between, e.g., species of animals and plants or car and motorcycle types.

We would like to extend the model in a number of ways. In FSA, we can model each part
independently, both in terms of shape and appearance. We would like to consider an exten-
sion in which additional latent variables explicitly encode for independent rigid transforma-
tions (such as scaling, translation and rotation) of the parts. It is also of interest to consider
alternative shape models, e.g. restricted Boltzmann machines or contour-based models. Ad-
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ditionally, FSA represents the statistics of part appearance in a way that ignores the spatial
structure of the pixels within parts. We would like to investigate how more structured mod-
els of texture can be used to represent part appearances. Finally, wish to find out if efficient
algorithms can be developed to automatically determine suitable choices of L and H .

Table 2: Average segmentation accuracies. Here we report the accuracy of the algorithm as
the average percentage of correctly labelled pixels across all the test images.

Weizmann Caltech4

Horses Cars Faces Motorbikes Airplanes

GrabCut [1] 83.9% 45.1% 83.7% 82.4% 84.5%
Borenstein et al. [4] 93.6% - - - -
LOCUS [29] 93.1% 91.4% - - -
Arora et al. [2] - 95.1% 92.4% 83.1% 93.1%
ClassCut et al. [1] 86.2% 93.1% 89.0% 90.3% 89.8%

Unsupervised FSA 87.3% 82.9% 88.3% 85.7% 88.7%
Supervised FSA 88.0% 93.6% 93.3% 92.1% 90.9%
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