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Abstract

This paper presents a median based classifier which predicts the conditional median
of the class label given the feature vector. The class label is defined through a hidden
variable whose median is further modeled as an additive model of the feature vector. We
propose to estimate the conditional median of the hidden variable given the feature vector
in the framework of generic functional gradient algorithm [5]. An equivalent form of the
definition of median is introduced, whose smoothed version is employed as the objective
function. To fit the model for the conditional median, the proposed objective function
is maximized by gradient ascent in functional space, updating the fitted model a small
step in the gradient direction in each iteration. The resulting algorithm, Median Boost,
is a boosting like procedure which obtains the informative features and the classifier at
the same time. On the task of labeling building blocks in natural images, the comparison
results show that Median Boost performs better than or similar to several alternatives.

1 Introduction
Various classification methods have been widely applied to computer vision problems, for
example, AdaBoost [16], Support Vector Machines [12, 14], logistic regression [13]. If the
feature vector has long tail distribution, or there are outliers in the data, it is well-known that
the median is usually more stable than other statistics [7, 8, 10, 11]. In particular, if some
of the components of the feature vector have high variability then, regardless of whether
or not these components convey information about the class label, classification accuracy
might be poor. In computer vision problems, the aforementioned case is possible to happen
since the data are often in very high dimensional spaces, and there is ambiguity in labeling
the training data which could introduce outliers. As such, it is worthwhile trying to design
classifiers based on the median information. To the best of our knowledge, median-based
classifiers have not been reported for classification problems in computer vision.

This paper proposes to estimate the conditional median of class label given the feature
vector in the framework of the generic functional gradient algorithm [5]. Toward this pur-
pose, we define the class label through a hidden variable whose median is further modeled
as an additive model of the feature vector. An equivalent form of the definition of median
is introduced, whose smoothed version is employed as the objective function. In functional
space, gradient ascent is performed to maximize the proposed objective function, updating
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the fitted model (i.e., the estimated median of hidden variable) a small step in the gradient
direction in each iteration. Finally, the class label is predicted using the estimated conditional
median of the hidden variable. The resulting algorithm is a boosting like procedure, which
is called Median Boost. Similar to AdaBoost [4], Median Boost obtains the informative
features and the classifier simultaneously.

The proposed Median Boost was tested on a publicly available dataset for labeling build-
ing blocks in natural images [12, 13], and we compared the obtained results to those obtained
by the median based classifier reported in [7] and the Probabilistic AdaBoost Cascade [18],
which is a variation of Adaboost Cascade [16]. The results show that compared to the alter-
native methods, Median Boost achieves better or similar performance in terms of detection
rate and site-wise error rate.

2 Boosting as Functional Gradient Descent
Boosting [4] is a classic algorithm in pattern classification and is well known for its simplicity
and good performance. The powerful feature selection mechanism of boosting makes it
suitable to work in very high dimensional spaces. Moreover, boosting can pick informative
features and obtain the final classifier simultaneously. Friedman et al. [5, 6] developed a
general statistical framework which yields a direct interpretation of boosting as a method for
function estimation, which is a “stagewise, additive model”.

Consider the problem of function estimation

f ∗(x) = argmin
f

E[l(Y, f (x))|x],

where l(·, ·) is a loss function which is typically differentiable and convex with respect to the
second argument. Estimating f ∗(·) from the given data {(xi,Yi), i = 1, · · · ,n} can be per-
formed by minimizing the empirical risk n−1 ∑n

i=1 l(Yi, f (xi)) and pursuing iterative steepest
descent in functional space. This leads us to the generic functional gradient descent algo-
rithm [1, 5], as shown in Algorithm 1.

Algorithm 1 Generic Functional Gradient Descent Algorithm

0: Set m = 0 and initialize f [0](·) = 0.
1: Increase m by 1, compute the negative gradient − ∂

∂ f l(Y, f ) at f [m−1](xi):

Ui = −∂ l(Yi, f )
∂ f

∣∣∣∣
f = f [m−1](xi)

, i = 1, · · · ,n.

2: Fit the negative gradients U1, · · · ,Un to x1, · · · ,xn by the base procedure:

{(xi,Ui), i = 1, · · · ,n} −→ g[m](·).

3: Update the estimation by f [m](·) = f [m−1](·)+νg[m](·), where ν is a step-length factor.
4: Check the stopping criterion, if not satisfied, go to step 1.

Many boosting algorithms can be understood as functional gradient descent with ap-
propriate loss function. For example, if we choose l(Y, f ) = exp(−(2Y − 1) f ), we would
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recover the AdaBoost algorithm [6], and L2-Boost [2] corresponds to l(Y, f ) = (Y − f )2/2.

3 Median Classifier and Median Boost
This section derives the proposed Median Boost algorithm, and discusses the connection to
the existing methods.

3.1 Predicting Median of Binary Variable
Consider the following model:

Y ∗ = h(x)+ ε and Y = I(Y ∗ ≥ 0),

where Y ∗ is a continuous latent variable, h(·) is the true model for Y ∗, ε is a disturb, and
Y ∈ {0,1} is the observed label given the feature vector x ∈ Rp, I(·) is the indicator function
with I(·) = 1 if the condition is true, otherwise I(·) = 0.

Let M(Y ∗|x) be the conditional median of Y ∗ given x, and let g(·) be a real monotone
increasing function. Clearly, for any value of y

P(Y ∗ ≥ y|x) = P(g(Y ∗)≥ g(y)|x) ,

it follows that

g(M(Y ∗|x)) = M(g(Y ∗)|x). (1)

Since indicator function I(t ≥ 0) is monotone increasing with respect to t [9, 11], Eqn. (1)
indicates that

I (M(Y ∗|x)≥ 0) = M(I(Y ∗ ≥ 0)|x) = M(Y |x). (2)

Therefore, the conditional median of Y , M(Y |x), could be obtained by fitting the conditional
median of Y ∗, M(Y ∗|x). If we model the median of the latent variable Y ∗ by a function
f (x,β ) with β as the parameter vector, i.e.,

M(Y ∗|x) = f (x,β ),

it follows from Eqn. (2) that the conditional median of the binary variable Y can be written
as

M(Y |x) = I ( f (x,β )≥ 0) . (3)

Recall that, if Z is a random variable, then the median of Z can be defined through the
following minimization problem (refer to [8] for a proof):

median(Z) = argmin
c

E(|Z− c|).

As such, given the training data {(xi,Yi), i = 1, · · · ,n}, with xi ∈ Rp and Yi ∈ {0,1}, to fit the
model for the conditional median of the class label Y , i.e., to estimate the parameter vector
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β in Eqn. (3), we can solve the following minimization problem and let b be the estimated
parameter vector:

b = argmin
β

{
L(β ) =

n

∑
i=1

|Yi− I( f (xi,β )≥ 0)|
}

. (4)

It can be verified that Eqn. (4) is equivalent to the following maximization problem:

b = argmax
β

{
S(β ) =

n

∑
i=1

[Yi−0.5]I( f (xi,β )≥ 0)

}
. (5)

3.2 Median Classifier
From the definition of the binary variable Y = I(Y ∗ ≥ 0), it follows that

P(Y = 1|x) = P(I(Y ∗ ≥ 0)|x) = P(Y ∗ ≥ 0|x) . (6)

Since f (x,β ) is the conditional median of the latent variable Y ∗, we have

P(Y ∗ ≥ f (x,β )|x) = 0.5. (7)

Thus, if f (x,β ) = 0, combining Eqns. (6) and (7) yields

P(Y = 1|x) = P(Y ∗ ≥ 0|x) = P(Y ∗ ≥ f (x,β )|x) = 0.5;

if f (x,β ) > 0,

P(Y = 1|x) = P(Y ∗ ≥ 0|x) > P(Y ∗ ≥ f (x,β )|x) = 0.5.

In summary, we have the following:

P(Y = 1|x) T 0.5 for f (x,β ) T 0, (8)

which is an inequality of the posterior probability of the label given the predictor vector.
Consequently, once the model is fitted, i.e., the parameter vector b is obtained, we can make
prediction by

Ŷ = I( f (x,b)≥ 0), (9)

where Ŷ is the predicted label for the input feature vector x. We call Eqn. (9) as a median
classifier because it makes decision based on the conditional median of the latent variable.
Eqn. (8) inidicates that the median classifier is equivalent to the Bayesian classifier with
cut-off posterior probability 0.5.

Median classifier is learned by performing the maximization problem defined in Eqn.
(5), which has a close connection to the training error rate. Let each term in Eqn. (5) be

Si = [Yi−0.5]I( f (xi,β )≥ 0) = 0.5I(Yi = 1)I( f (xi,β )≥ 0)−0.5I(Yi = 0)I( f (xi,β )≥ 0).

Then, Eqn. (5) reads

S(β ) =
n

∑
i=1

Si = 0.5
n

∑
i=1

I(Yi = 1)I( f (xi,β )≥ 0)−0.5
n

∑
i=1

I(Yi = 0)I( f (xi,β )≥ 0)

= 0.5T P−0.5FP = 0.5T P−0.5(Neg−T N) = 0.5T P+0.5T N−0.5Neg (10)
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where T P, FP, and T N are the true positive number, false positive number, true negative
number of the classifier I( f (x,β ) ≥ 0), and Neg is the number of negative examples. Eqn.
(10) indicates that maximizing Eqn. (5) is equivalent to maximizing the sum of T P and T N,
i.e., the number of correctly classified examples. Hence, maximizing Eqn. (5) implicitly
minimizes the training error, and this argument justifies our choice of the objective function.

3.3 Median Boost: Boosting based Median Classifier
The median classifier defined in this paper is learned by maximizing function S(β ) defined
in Eqn. (5). However, S(β ) is not differentiable because of the used indicator function. To
apply gradient based optimization methods, we replace the indicator function I( f (x,β )≥ 0)
by its smoothed version and solve

b = argmax
β

{
S(β ,h) =

n

∑
i=1

[Yi−0.5]K
(

f (xi,β )
h

)}
, (11)

where h is a small positive number, and K(t) is smoothed version of the indicator function
with the following properties:

K(t) > 0, ∀t ∈ R, lim
t→∞

K(t) = 1, lim
t→−∞

K(t) = 0.

In this paper, we take K(·) as the standard normal cumulative distribution function.
We propose to maximize the objective function in Eqn. (11) by gradient ascent in the

framework of functional gradient method [5]. The fitted function is updated in the gradient
direction in each iteration. Let f [m](·) be the fitted function at the m-th iteration, similar to
the gradient boosting algorithm (Algorithm 1), we obtain the Median Boost algorithm, which
is shown as Algorithm 2, where

l(Y, f ) = [Y −0.5]K ( f /h) .

Let the base procedure be h(x,a) with a being the parameter vector. Then the third step
in Algorithm 2 can be performed by an ordinary least square regression:

am = argmin
a

n

∑
i=1

[Ui−h(xi,a)]2 ,

hence the function g[m](x) = h(x,am) can be regarded as an approximation of the gradient
in the functional space. Step 4 performs gradient ascent in the functional space, in which
the step-length factor ν can be determined by line search (e.g., Fibonacci search, Golden
section search [17]). Alternatively, for simplicity, in each iteration, we could update the
fitted function f [m−1](·) by a fixed but small step in the gradient direction. To guarantee the
performance of the resulting model, ν is fixed at a small value as suggested by [1, 5].

The median classifier has close connection to binary quantile regression [10, 11], which
optimizes an objective function similar to Eqn. (5). However, in binary quantile regression,
simulated annealing algorithm is employed to perform the optimization. Although a local
optimum is guaranteed, simulated annealing is well known for its expensive computation
and it is usually difficult to tell when the algorithm converges. As a comparison, Median
Boost is based on gradient ascent, which yields a local maximum and converges fast.
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Algorithm 2 Median Boost Algorithm

0: Given data {(xi,Yi), i = 1, · · · ,n} with xi ∈ Rp and Yi ∈ {0,1}; initialize f [0](x) = 0.
1: for m = 1 to M do
2: Compute the gradient ∂

∂ f l(Yi, f ) at f [m−1](xi):

Ui =
∂ l(Yi, f )

∂ f

∣∣∣∣
f = f [m−1](xi)

=
Yi−0.5

h
K′
(

f [m−1](xi)
h

)
, i = 1, · · · ,n.

3: Fit the gradients U1, · · · ,Un to x1, · · · ,xn by the base procedure:

{(xi,Ui), i = 1, · · · ,n} −→ g[m](·).

4: Update the estimation by f [m](·) = f [m−1](·)+νg[m](·), where ν is a step-length factor.
5: end for
6: Output the classifier I( f [M](x)≥ 0).

Due to the expensive computation of simulated annealing, binary quantile regression can
only work in very low dimensional spaces. However, in applications, we frequently face
hundreds, even thousands of features, and it is often desired to find out the informative ones.
Clearly, in this case, binary quantile regression is not applicable. On the contrary, Median
Boost is designed to work in high dimensional spaces, and by using certain types of base
learner (e.g., decision stump [16]), it enables us to select the most informative features.

Hall et al. [7] proposed a median based classifier which works in high dimensional space.
For a given feature vector, [7] calculates the L1 distances from the new feature vector to the
component-wise medians of the positive examples and negative examples in the training set,
and assigns class label as the class with the smaller L1 distance to the new feature vector. Al-
though computationally efficient, this simple nearest neighbor like algorithm cannot perform
feature selection as the proposed Median Boost.

4 Experiments
We test the proposed Median Boost on the task of labeling building blocks in natural images
[12, 13]. The training and testing sets contain 108 and 129 images, respectively, each of
size 256× 384 pixels. Each image is divided into non-overlapping 16× 16 image patches.
The ground truth was generated by manually labeling every image patch as building or non-
building. There are 5,203 building patches and 36,269 non-building patches in the training
set, and 6,372 building patches and 43,164 non-building patches in the testing set.

4.1 Features
For the building block labeling problem, we use the features described in [12, 13] as our first
set of features, which are based on the weighted histogram of the gradient orientation. Please
refer to [12] for more details. We also use different combinations (sum, difference, etc.) of
features from [12].
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We apply different filters (e.g., Gabor filters, Gaussian filters, Canny Edge detectors) to
the original image, and extract other features from the filter responses. We notice that most
building regions are relatively smooth with small variances while most background regions
have cluttered pattern with large variations. This observation inspires us to use mean and
variance values of different filter responses (include the original image) inside sub-windows
as features.

It is known that histograms of different filter responses can capture texture information
[19]. Therefore, we introduce histogram based features, expecting that they can capture
the difference between background and the building patches. Inside each sub-window, we
calculate the histograms from each filter response, and use each bin of the histogram as a
feature; the entropy of the histograms is used as a feature as well to evaluate the regularity
of the sub-window.

We further notice that building patches are primarily characterized by straight lines with
horizontal or vertical direction, and this motivates us to extract features from the edge map.
In canny edge maps with different scales, we count the numbers of horizontal and vertical
edge points inside each sub-window, and use these numbers as features. The regularity of
the building region and the irregularity of the background also make the orientation of the
gradient a good discriminator, therefore, we calculate the mean value of the orientation of
the gradient inside a sub-window and use it as a feature.

The largest sub-window has size 48× 48, and the smallest is of size 6× 6. We design
the sub-windows such that they have at least 6× 6 overlap with the current image patch (a
16×16 window). By doing so, each feature contains neighborhood information to classify
the current image patch. For each sub-window in the image, the mean, variance, and his-
togram can be calculated efficiently using integral image [16] and integral histogram [15].
Altogether, we have around 10,000 features for each image patch.

4.2 Results
The high dimensionality of the feature space in this problem prevents binary quantile re-
gression [10, 11] from being applicable. To test the Median Boost algorithm on the build-
ing block labeling task, we used the standard normal cumulative distribution function with
h = 0.1 as the approximation to the indicator function. From our experience, the classifier is
not sensitive to the value of h as long as h < 0.5. We follow the suggestion from [1, 5], and
fix the step size parameter at ν = 0.1. In performing the third step of the Median Boost algo-
rithm (see Algorithm 2), the simple linear regression model with only one predictor was used
as weak learner for its simplicity. The Median Boost classifier was ran for 120 iterations.

A variation of the AdaBoost cascade [16], Probabilistic AdaBoost Cascade (PABC) [18],
was tested with the same set of features. The cascade structure contains four AdaBoost
nodes, and each node runs 120 iterations, with decision stump as weak learner. In order to
control the detection rate of the cascade, we enforce that at most 1% of positive examples
could be rejected at each node by adjusting the threshold parameter in AdaBoost. As a
comparison, we also tested the median classifier defined in [7] on this problem.

The first four features picked by the Median Boost algorithm are: the sum of the 12th
and the 22nd features from [12], the variance of the Gabor filter response inside the sub-
window at the relative location (-2, -10, 26, 26) to the top-left corner of the current image
patch, the sum of the 14th and 25th features from [12], and the mean of the original image
inside the sub-window at the relative location (-2, 0, 5, 5). The first four features selected
by the first AdaBoost node are: Variance of the Gabor filter response inside the sub-window
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at the relative location (-9, -16, 26, 26), the sum of the 1st and 21st features from [12],
the difference of the 2nd and 17th features from [12], and the average number of vertical
edge points in the sub-window at the relative location (-16, -9, 19, 26). The lists of selected
features show that Median Boost and AdaBoost agree that the features from [12] and the
variance features of filter response in a sub-window are informative.

Performance Measures PABC 1 PABC 2 PABC 3 PABC 4 median clf [7] median boost
Detection Rate 94.27% 89.01% 83.33% 77.56% 79.49% 75.35%

False Positive Rate 25.37% 16.18% 11.58% 8.37% 22.73% 9.97%
False Negative Rate 5.73% 10.99% 16.67% 22.44% 20.51% 24.65%
Site-wise Error Rate 22.84% 15.52% 12.24% 10.18% 22.45% 11.86%

Table 1: The numerical evaluation result on 129 testing images: “PABC n” stands for Prob-
abilistic AdaBoost Cascade with n AdaBoost nodes. The results of PABC are given in [18]

Table 1 presents the performance measures for different models. We can see that initially,
with only one AdaBoost node, the detection rate of PABC is very high, this is expected be-
cause we enforce the high true positive for each node. With more AdaBoost nodes, the
detection rate of PABC decreases, but the false positive rate also decreases, as a result, the
site-wise classification error rate decreases monotonically. With 120 iterations, the perfor-
mance of the proposed Median Boost has similar detection rate and error rate with PABC
with 4 AdaBoost nodes, and this shows the efficiency of the proposed algorithm. We also
observe that the median classifier in [7] has very high false positive although it has a rela-
tively high detection rate, as a result, it has a significantly higher site-wise error rate than
both Median Boost and PABC.

Fig. 1 shows the detection results on four testing images. As (b) shows, with only one
AdaBoost node, PABC can detect almost all the building blocks, i.e., it has high detection
rate and high false positive rate. With more AdaBoost nodes, PABC can remove some false
positives, as seen from (c) to (e). (g) presents the results obtained by the proposed Median
Boost, and we see the results are comparable to the results in (e), but visually better than
the results in (b) to (d). (f) is the result obtained by the median classifier in [7], which
shows significantly more false positives than both (e) and (g). These visual observations
are consistent with the numerical measures presented in Table 1. From Fig. 1, we see the
results from Median Boost and Probabilistic AdaBoost cascade are visually quite close to
the ground truth which are shown in (h). Keep in mind that in order to achieve similar
performance, PABC uses 4 AdaBoost nodes, totally 480 features, while Median Boost only
selects 120 features.

It is worth mentioning that in conducting the experiment, we notice that the manually
labeled ground truth is not consistent. For example, in some images, the building roof is
labeled as positive example, while in other images, it is labeled as negative; in some images,
part of the building reflection is labeled as positive while other part of the reflection is labeled
as negative (see column 3 in Fig. 1). This inconsistency indicates that there are outliers in the
data, and the satisfactory performance of Median Boost verifies the stability of the median
information to the outliers.

5 Conclusions and Future Work
This paper proposes designing classifiers based on estimating median of binary response.
Inspired by the idea of gradient boosting [5], we designed a practical algorithm which works
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 1: The experimental result on image patch labeling, the detected building patches
are marked with red boundary: (a) shows the input image; the labeling results by PABC
[18] with 1 to 4 AdaBoost nodes are shown in (b) to (e), respectively; (f) shows the labeling
results by the Median Classifier [7] and the labeling results by the proposed algorithm are
given in (g); (h) is the the manually labeled result. Please view in color for better visual
effect.

in the framework of additive model, and updates the fitted model in the gradient direction
by a small step in each iteration. The proposed Median Boost algorithm obtains informative
features and the classifier simultaneously. On the problem of labeling building blocks in
natural images, compared to the Probabilistic AdaBoost cascade, Median Boost has similar
performance with far fewer iterations. Compared to another median based classifier, Median
Boost performs significantly better.
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In computer vision applications, we often face multi-class situation. Therefore, we plan
to develop the multi-class version of Median Boost. Many existing techniques can trans-
form multi-class task into a series of two-class tasks, for example, one-vs-all [4] and Error-
Correcting Output Codes [3]. Similar to AdaBoost cascade [16, 18], it is also possible to
build a median classifier cascade, and this is another future research project. To our best
knowledge, this work is the first attempt to use median information for classification prob-
lems in computer vision, and we are actively seeking for other applications of the proposed
Median Boost algorithm.
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