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Abstract

Current state of the art multi-target tracking (MTT) exists in an “either/or” situation.
Either a greedy approach can be used, that can make use of second-order information
which captures object dynamics, such as “objects tend to move in the same direction
over adjacent frames”, or one can use global approaches that make use of the information
contained in the entire sequence to resolve ambiguous sub-sequences, but are unable
to use such second order information. However, the accurate resolution of ambiguous
sequences requires both a good model of object dynamics, and global inference.

In this work we present a novel approach to MTT that combines the best of both
worlds. By formulating the problem of tracking as one of global MAP estimation over
a directed acyclic hyper-graph, we are able to both capture long range interactions, and
informative second order priors. In practice, our algorithm is extremely effective, with
a run time linear in the number of objects to be tracked, possible locations of an object,
and the number of frames. We demonstrate the effectiveness of our approach, both on
standard MTT data-sets that contain few objects to be tracked, and on point tracking for
non-rigid structure from motion, which, with hundreds of points to be tracked simulta-
neously, strongly benefits from the efficiency of our approach.

1 Introduction

The tracking of multiple points or objects is a prerequisite for many types of video analysis.
For example: non-rigid structure from motion makes use of the long term tracks of interest
points in performing 3D reconstruction [8, 25]; in surveillance the tracking of individuals is
of interest in its own right. Traditional multi-target tracking has relied upon either a naive ap-
proach to tracking, that treated the location of each object track as being independent of one
another [10], or by exhaustively mapping the set of valid combinations of object locations
[19] — given exclusion constraints which say that only one object may occur in a particular
location at a particular time. These approaches suffer from different drawbacks: the naive
approaches may merge object tracks (see fig. 1, far left); while the computational cost of
the combinatorial approaches grows exponentially with the number of objects considered,
making them ill-suited for tracking problems containing a large number of points.
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Diagram showing common failures of MTT, as two tracks Naive Dynamic Prog. [1,7]| v Polyt v X X
closely pass by each other. The boxes show the true tracks Greedy [26]| v Linear X v V
of objects, while the colour of the balls and the arrows in- Kalman [3]| ¢ Linear X v V
dicate their object labelling. Left: Without the use of ex- Particle [3]| v Linear X v
clusion constraints (forcing only one object to occur in a L.P[13]]| V Poly v v X
particular location at any time) object tracks may merge. Flow[4,30]| X Polyt v v X
Centre: Even with the use of exclusion constraints, if the K-short Path[5]| X Polyt v v X
distance between two object tracks is smaller than the Our approach| v Linear v v v/
distance moved by a single object in two frames flick- t While we report worst time running times, the authors
ering may occur. Right The use of second order terms | of [1, 4, 5] report that in practice a linear, rather than
to penalise objects sharply changing direction eliminates | polynomial, growth in complexity may be obtained.
flicker. See section 1 for details. Fig. 3 for real world
examples.

Figure 1: Left: A diagram demonstrating common failures of MTT Right: A comparison of
existing methods against our approach. See section I for more details.

Recently, there has been substantial progress in modelling these exclusion constraints
explicitly [4, 5, 13, 30]. This has allowed them to be enforced without enumerating all
possible permutations of object tracks. These recent works can again be loosely categorised
into two families: Greedy methods such as the Kalman [19] or particle filters [3] are able to
make use of second order cues such as the fact that tracks tend to continue moving smoothly
in the same direction, but become lost in ambiguous sub-sequences, where it is unclear how
objects have moved; and global methods [4, 5, 13] which do not capture these second order
relationships but make use of strong cues in other frames to resolve local ambiguities.

In this work, we present a novel global formulation for MTT which, alongside compactly
representing exclusion constraints, is able to make use of second-order prior information
about motion, eliminating the common failure case in which object tracks flicker back and
forth between their correct locations (as shown in fig. 1 centre left).

Second order approaches The use of second order information, in particular the prior that
objects being tracked are likely to have a smoothly varying velocity, is common to greedy
approaches such as the Kalman and particle filters [3, 19]. However, while the complexity
of such methods grows linearly with the number of frames, in some cases, they may grow
exponentially in the number of objects [19], or in the size of their search window [3]. Such
methods are easily confused by ambiguous sub-sequences, as they are unable to use infor-
mation regarding the position of objects in future frames to resolve the confusion.

Global approaches Outside of computer vision, global methods, including the Viterbi algo-
rithm and shortest path algorithms, have been frequently combined with the use of a large
state space which enumerates all possible permutations of objects. While such approaches
are valid for domains such as radar tracking, where few objects are tracked, and there are
relatively few locations an object might be in at a particular point in time, the most efficient
algorithms require ¢'(L? - F) run time, and many require &'(L*" - F) operations, where L is
the number of possible locations an object may occur, N the number of objects, and F the
number of frames the object is tracked for. See [23] for an overview. Such approaches are
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inappropriate for vision problems — even when there are relatively few objects in a scene,
the intrinsic ambiguities mean that there are often many locations where each object may be.

The work [13] first combined the explicit modelling of exclusion constraints with a linear
program that could find the global solution to the problem in polynomial time. Our work can
be seen as improving on theirs — we make two important modifications of their formulation:
we replace their higher-order constraints that multiple objects may not exist in the same
location, with a set of pairwise constraints that say “No pair of objects may exist in the same
location”, allowing for efficient inference with existing vision algorithms; furthermore, we
augment their pairwise soft constraint on spatial consistency' with an additional soft tertiary
constraint that encourages objects to have similar velocities in adjacent frames.

Several flow [4, 30], and path based [5] global approaches have been proposed. These
approaches are often efficient in practice, while they have a worst case polynomial run times,
the authors of these methods report a linear growth in complexity on real data. Compared
to our approach, which makes use of persistent appearance models, and second-order cues
that encourage objects to change velocity smoothly, such methods are only able to match
appearance between two adjacent frames. This carries significant disadvantages: firstly, al-
though such methods can make use of similarities in appearance over adjacent frames [5],
they are unable to use the complementary information in a persistent model of object ap-
pearance. Such persistent models can be highly informative [1, 7], and the absence of them
makes it harder to recover from temporary lighting changes, and prevents the recognition of
a previously seen object reentering a sequence. These methods are also unable to capture the
second order prior that the velocity of a tracked object changes smoothly, leading to errors
such as those shown in fig. 1 centre left.

A summary of the advantages of our approach can be seen in fig. 1 right. In brief: Ours is
the only global approach to MTT that incorporates exclusion constraints and has a guaranteed
linear running time; the only efficient global approach [4, 30] that can make use of persistent
appearance models; and the only global approach to make use of highly informative second
order priors which describe the motion of a tracked object.

2 Notation and Cost Function

We formulate tracking as a discrete problem, in which the aim is to assign a set of objects to
a set of fixed locations. These locations are either given by interest point or object detectors,
or are an occluded state, that indicates that the object has not been detected in a frame, but
that it is believed to be in a particular region of the image. We use N to refer to the number
of objects being tracked, O the set of occluded states, F' for the number of frames, and L the
number of possible locations. We write x,,; for the location of object o at time ¢, and x for the
set of complete tracks of all objects over all frames. To find a set of good tracks, we seek the
complete tracks x which leads to a minimal cost solution of some cost function C(-). This
cost function can be decomposed into 4 components as follows:

e Unary Potentials: U, ,(x,,) The cost of placing an object o in location x,, at time .
This typically takes into account how closely the appearance of the object matches the
pixels in the location. It may also take advantage of prior knowledge of a particular
object’s expected location at a given time.

o Pairwise Potentials: P, (x,;,%o+1) These potentials describe the cost of an object o
transitioning from location x,; at time ¢ to location x, ;11 at time # + 1. This cost takes

! This constraint encourages objects to appear in similar locations in adjacent frames.
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into account the distance between the locations x,; and x,;, and is typically of the
form

Po,t (xo,laxo,tJrl) = kt| |xo,t —Xo,t+1 ||%7 €))

where k; is an arbitrary constant used to weight the pairwise cost. The pairwise
costs may also be used to penalise large changes in appearance from location x,
10 X 1+1 [5].

o Tertiary Potentials: T, ; (X1, X041, %0s+2) While our inference approach supports any
form of potentials over the 3 locations, X,;,Xo+1 and Xx,,12, we will use them to
penalise an object suddenly changing direction. In this work, these potentials typically
take the form

To,z (xo,tyxo,tJrl axo,tJrZ) = k” | (x(),l 7x0,l+1) - (xo,tJrl 7xv,t+2) ‘ |% 2)

= k” |2x0,t+1 — Xoyt —xoﬁz+2||%7

where again k] is an arbitrary weighting constant. We will also use these tertiary
potentials to force an object to reappear next to the location it disappeared from if it
is occluded, or undetected, for a single frame. These tertiary costs which transition
through an occluded state take a similar form to the pairwise costs (1)

2
Toﬁz (xo,f+17y7x0,t+2) = k;/”xo,t —xo,t+2| |27 3)
where y € O is an occluded state.

e Exclusion constraints: These are hard constraints which enforce that only one point
may occupy a single location at any time. We relax this constraint for occluded loca-
tions, and allow multiple objects to be present in them, as they are essentially used as
pigeon holes to store the location of objects which are currently undetected.

Putting these constraints together, we arrive at the following objective: we seek a la-
belling x that minimises the cost function C(-) defined as

mi]\l]lFC(X) = Z [ Z Uo,t (on) + Z PoJ (xomxa,t—&-l) + Z To,t (xo,tax07r+1 7-x0,t+2)]
xeL™ 0<N I<F t<F—1 t<F—2
)

such that Y A(x,, =1)<1Vt, VI€L, I 0. )

o<N

This final constraint is the exclusion constraint, which says that at most one object may
appear in any unoccluded location at one time.

3 Graph structure and Inference

With the exception of the exclusion constraints, the optimal solution to the above cost
function can be exactly solved in polynomial time, using the second order Viterbi algo-
rithm [17]. Note that, in general, the tertiary potentials we have introduced are incompatible
with standard graph based MTT approaches [5, 30]. While third order submodular costs can
be embedded in a graph using one additional node [14], embedding arbitrary tertiary costs
requires the use of negative edges [29], which prohibits the use of efficient flow algorithms.
Higher-order Viterbi algorithms and belief propagation do not suffer from such issues as
they exploit the acyclic structure of the tracks. Given this, it is natural to ask if we can also
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Inference Scheme

1. fork={1,2,...N} do

2 Forward (k)

3 Backward(k)

4 Message down (k)

5. end for

6: fork={N,N—1,...1} do
7

8

9

Graphical models demonstrating our approach. Left: A

Undo sent message(k)
slice of the graph showing the fully connected DAG be-

Backward(k)
tween 6 object tracks at a fixed time. Right: The full DAG Viterbi(k)
showing the znterdepena?er'we between n(?def of the. glraph 10: Constraint up (k)
over several frames. Different colours indicate different 11: end for

object tracks. For the sake of clarity, the tertiary hyper-

edges are omitted from the graph. Directed edges are in- High-level pseudo code for inference. See

dicated by arrows, while undirected edges are indicated | supplementary materials for complete pseudo code.

by straight lines connecting nodes of the graph.

Figure 2: MAP estimation of the DAG
incorporate exclusion constraints into our graph structure, without introducing dense cycles

which make belief propagation based inference perform poorly [15, 24].

The answer to this question is yes; these constraints can be formulated as a Directed
Acyclic Graph (DAG) between object tracks. Given a set of object tracks {x;,Xa,...,X,}, for
all 7, we add an extra set of directed edges from x;, to all x;, such that i > j (see fig. 2 left
for an illustration of the resulting graph structure). We associate the pairwise cost

0 lf x,',, # Xj’t
—oo  otherwise

E(-xi,hxj,t) = { (6)
with each such edge. The full graph is still a DAG (see fig. 2 centre), and can be solved using
standard belief propagation techniques [20] (see fig. 2 right for an overview of the algorithm
and Supplementary Materials for the full pseudo code). By formulating this problem as
inference of a DAG rather than an undirected graph, we are making assumptions about the
causal structure of the problem that may be unwarranted [21]. However, in practice, such
assumptions are relatively common in computer vision [12, 16, 18], and except for our use
of second-order belief propagation, inference is identical to that of [16].

3.1 Efficient Inference

Using the approach of [17], the complexity of performing a single iteration of the second
order Viterbi algorithm or the forward backward algorithm for a single object, is &(L3 - F).
Similarly, the time taken to pass messages from one particular object track to all others has
an average run time of ¢’(L? - N) using the techniques of [20]. We will now show how these
computations can be efficiently performed in €@ (k*-L-F)? and in €(L) time respectively,
using techniques similar to those of [9].

Efficient Second Order Viterbi for Tracking Gating is a standard technique for improv-
ing the efficiency of global tracking methods [23]. It is based on the observation that if the
soft costs of transitioning between two locations very far away is sufficiently high, such a
transition never occurs in practice. Consequently, such soft costs penalising these transi-
tions can be replaced with hard constraints that prohibit such transitions without altering the

2 is a constant substantially smaller than L
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global optima. In graph based algorithms, such as k-shortest paths [5], gating is equivalent
to deleting edges with very high cost, before running the shortest path algorithm. In both the
forward-backward and Viterbi algorithms the same approach can be taken where we make
an a priori decision to only update the marginals of locations that are sufficiently close to one
another. See [22] for more details. If we only allow a transition from any location to at most
k other locations, this reduces the run time of the standard Viterbi algorithm from & (L2 -F)
to O(k-L-F). We take exactly the same approach with the second order forward-backward
and Viterbi algorithms; by restricting the space of valid transitions in the same manner, there
are at most k%L valid transitions over three adjacent frames, and this leads to second order
algorithms with a run time of & (k- L-F). See Supplementary Materials for full code.
Second order Viterbi and Occluded States The above speed-up can not be used if there
is only a single occluded state, as this would imply that, over three frames, an object in any
location can transition to any other location via the occluded state. This would lead to an
overall run-time complexity of &' (k- L? - F). Fortunately, if we have multiple occluded states
associated with different locations, this is not the case. By blocking a transition to an oc-
cluded state at a particular location from a location far from it, we can restrict ourselves to
at most k transitions to/from any single occluded state, and perform the Viterbi algorithm in
O (k* - L- F) with occlusions. In practice, the use of multiple occluded states leads to much
better final results, as it prevents points from moving to an occluded state in order to jump
across the image. It is one of the few cases in vision where a more discriminative model is
also more computationally efficient.

Efficient Updates between Object Tracks Efficiently passing messages between object
tracks requires a different approach. A naive approach to this problem would involve pass-
ing a message between every pair of objects, at every frame. The cost of computing these
messages is ¢'(L?) leading to an overall run time of &(N?-L?-F). However, the inher-
ent symmetry of the messages can be exploited to reduce the run time of this process to
O(N-L-F). Ordering the tracks as before, we define M, as the marginals of a single track,
as computed by the forward-backward algorithm (see lines 1-2 of Message down Procedure
Supplementary Materials for definition). We first note that the same messages are passed
from any object track i to every track j > i . Letting [ = argmax;, M, ;(l2), we can compute
these messages passed down, which we call | M; ;; from object i to all objects j > i as

M;, (1 ifl £
¢M,-,,-,t<z>=n;gx<Mi,t<zz>+E<z,zz>>={ 9 A )

max,, ,;iMi;(l2) ~ otherwise
in (L) time. Under constant reparameterisation this is equivalent to

max, ;M (l) =M, (1) ifl=1

Y Mi (1) = { ®)

0 otherwise

and can be computed in ¢'(L) time. To avoid sending messages of this form ¢'(N?) times,
we exploit the fact that the same message is sent by object track i to all objects j > i, and
amend a single message as it is passed in sequence through all object tracks. In this case,
object i updates this message | M;(l) as follows

LM, (1) = Mi(D) +mixMol () = My, (D). ©)

Using this technique, the downward max-margins can be iteratively computed for objects
tracks 1 through to n, at which point, following [20] we can perform assignment, to find
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the optimal solution. This is done by first removing the message previously passed down
(see Undo message Supplementary materials), and then using the second order Viterbi algo-
rithm to perform assignment. Any constraint due to this assignment is then appended to the
messages (see Constraint Up).

4 Experimental Evaluation

We evaluate our approach on challenging data from several domains, including non-rigid
structure from motion NRSfM, player tracking in a basketball match, and the tracking of
people in crowds. In the evaluation, we make use of the standard MOTA and MOTP scores [6]
to measure our efficiency’.

For the tracking of basketball players, we made use of thresholded detection sites from [27],
on a sequence of 500 frames from the Apidis project. The detection sites of [27] were pro-
jected onto an overhead camera view, and we made use of both the appearance and motion
of players in this top view to form our potentials (see fig. 3). The distance between players
from frame to frame, was also passed to [5] for evaluation. To evaluate the effect of our
different potentials, we repeatedly ran our algorithm turning each of them off (see fig. 3).
All of our potentials make a substantial contribution to the effectiveness of our approach.

In the basketball sequence, all approaches are limited by the quality of the detection sites.
Assuming that every detection site was correctly classified the best possible MOTA score is
.85, and given perfect detection sites our approach has a MOTA score of .99. Nonetheless, we
feel that these experiments are valuable, as they show the suitability of our approach on real
world detections. The only approach with a higher MOTA than ours is [2], which achieves
this by making many false detections leading to a MOTP score 15 times worse than ours.

Various authors [4, 5] have claimed that approaches such as ours or [13], which can make
use of persistent appearance models, cannot be used to track an unknown number of objects.
To show this is not the case, we evaluated our approach against [5], on two sequences taken
from their paper: the first is a monocular sequence from PETS 2009 (S2/L1) and the second
involves the tracking of multiple ping-pong balls. In both sequences, detection cues were
provided by [10] and we track an arbitrary number of objects. To do this, we estimate the
greatest number of objects present in a single frame and perform inference with this many
tracks. Tracks leaving the scene move to an occluded state, and are then allowed to re-enter
from any side as a new object.

In this difficult scenario, where we are unable to make use of persistent appearance mod-
els or the knowledge of how many objects are present in the scene, we perform slightly worse
than [5]. This can partially be attributed to incompatibilities between our approach and [10].
In practice, local maxima of [10] often occur relatively far from the true location of people,
and if we do not perform non-maximal suppression, without knowledge of appearance or the
number of objects in the image, we often get false positives.

For NRSfM, we took a synthetically rendered sequence of a flag moving in the wind
allowing the comparison with ground truth [11]. As the number of points which could be
tracked is arbitrarily large, the conventional measures of MOTA and MOTP are meaningless,
and instead we report the root mean squared error of the tracks, as a measure of track drift.
We were unable to evaluate the effectiveness of [5] on this data set, as we had insufficient
RAM on our server. In practice, our algorithm took around 4 minutes to track 400 points over
200 frames.

3For MOTA higher is better, and 1 is optimal. For MOTP lower is better, and 0 is optimal.
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Consistent labelling

Consistent labelling

Bottom Right of Frame: A
three-way player swap blue
/ green / yellow is avoided
through the use of velocity
cues (2).

Consistent labelling

System Failure: The major-
ity of players are undetected
for a single frame. Although
we continue to hallucinate
the presence of red and green
these boxes are misaligned in
this frame, and this is consid-
ered a false positive.
Bottom Left and Right of
Frame: A flip occurs swap-
ping pink and grey, and yel-
low and blue respectively.
Tertiary potentials avoid this
error due to cost (3). As
these tracks still contain
breaks, MOTA and MOTP
do not reward this recovery.

Basketball Ground Truth

Without Tertiary Potentials

With Tertiary Potentials

Figure 3: The benefits of tertiary potentials on the basketball sequence.

Basketball MOTP  MOTA
Pairwise only 0.6879 -1.064 POM detections PETS 2009 Balls sequence
Pairwise and unary 0.6021 -1.070 - MOTP | MOTA MOTP | MOTA
Pairwise and occlusion 0.8227  0.718 K-Shortest Path 1.2018 | 0.6783 || 0.3015 0.90
Pairwise, unary, and occlusion | 0.8214 0.725 Our method 1.2742 05016 0.7687 0.8204
\ Complete method [ 07198 0735 |
Basketball memory total optimisation
usage time time MOTP | MOTA NRSEM RMS
Track-before[27] - - - TLo| 0614 e ade Lucas Tomasi [281]142.59
Trajectory assoc[2] - - - 12.7 0.781 0 thod 3766
K-Shortest Path[5] 16GB | 2m25s 1m 455 1.09 | 0586 T metho :
Our method 550 MB Im 30s I.1s 0.72 0.735

Figure 4. Top Right:Comparison of MOTP and MOTA on PETS 2009 S2/L1 monocular and balls sequence.Bottom Left:
Computational resources (RAM allocated), computation time, MOTP and MOTA for [5] and our approach on the basketball se-

quence.Bottom Right: Feature tracking on the motion capture of a flag. Root Mean Square Error is shown for 400 feature points

tracked. fIncludes matlab instance.
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S5 Conclusion

We have presented a state of the art approach to tracking and demonstrated its importance
in interest point tracking in non-rigid structure from motion and multiple person tracking
under highly challenging scenarios. Our approach is the first global method to make use
of second order cues which describe the acceleration of points and our experimental results
convincingly demonstrate their importance. Compared to other efficient algorithms [5] our
approach is over a hundred times faster, and exhibits better worse case performance. This
improved efficiency allows us to track hundreds of points easily, and to estimate the location
of basketball players at almost 500 frames per second. Consequently, we expect this work to
be of strong interest to both the non-rigid structure from motion community, and those work-
ing in surveillance, or real time multi-target tracking. Our code is available for download at
http://www.eecs.gmul.ac.uk/~chrisr/tracking.tar.gz.
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