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The Non-Negative Matrix Factorization (NMF) algorithm is one of the
most popular Machine Learning techniques, being widely used for many
computer vision applications. NMF aims at decomposing the data ma-
trix into a product of a non-negative basis matrix with a non-negative
coefficients matrix. Regarding the discriminative power of the features
extracted using NMF, only a few approaches have been proposed. More
precisely, in [2] the authors introduced discriminative constraints in order
to extract bases that correspond to discriminative facial regions for the
problem of face recognition. The proposed Discriminant NMF (DNMF)
[2] resulted in bases corresponding to salient facial features, such as eyes,
mouth etc. In [1] projected gradients were used in DNMF (PGDNMF) for
facial expression and face recognition. In both of the above mentioned ap-
proaches the discriminant constraints were introduced in the cost function
to yield more discriminative bases. However, the introduced constraints
were taylored for a rather simplistic LDA-based classifier.

In the proposed approach we choose the projections in such a way
that the discriminative ability of an SVM classifier is maximized, there-
fore ensuring a higher classification performance. More specifically, we
introduce soft max-margin constraints to the objective function of NMF
to obtain a basis matrix that maximizes the classification margin using
the features that are extracted using those bases. The optimization is per-
formed with respect to the unknown bases, the projection coefficients and
the parameters of the separating hyperplane and is solved in an iterative
manner, where at each iteration we solve only for one of them while keep-
ing the others fixed. The resulting sub-optimization problems are either
instances of Quadratic programming with linear inequality constraints or
classical SVM-type problems.

Let {xi,yi}L
i=1 denote a set of data vectors and their corresponding

labels, where xi ∈ Rm, yi ∈ {−1,1}. The objective is to determine a set
of basis vectors that can be used to extract features that are optimal under
a max-margin classification criterion. The optimization problem for the
proposed criterion is given by

argmin
G,H,w,b,ξi

λ‖X−GH‖2
F +

1
2

wT w+C
L

∑
i=1

ξi (1)

s.t. yi(wT GT xi +b) > 1−ξi

ξi > 0, 1≤ i≤ L, H≥ 0

where X = {xi}L
i=1, G, H the decomposition matrices, λ and C are pos-

itive constants and w,b,ξi are the classifier parameters. The first term
in the above optimization problem corresponds to the NMF reconstruc-
tion error while the remaining terms correspond to the maximum mar-
gin classifier. The above formulation aims at maximizing the margin of
the support vectors while at the same time minimizing the reconstruction
and misclassification error. The classifier is trained on the projected data
points GT x, obtaining in this way the hyperplane parameter w and b. We
iteratively solve for one of the terms G, H and w,b,ξi by keeping the
remaining parameters fixed

We first solve for G by keeping H,w and b fixed. Since w is fixed,
the optimization problem in Eqn. 1 is simplified as

argmin
G,ξi

λ‖X−GH‖2
F +C

L

∑
i=1

ξi (2)

s.t. yi(wT GT xi +b) > 1−ξi

ξi > 0, 1≤ i≤ L

The above formulation is a weighted combination of the reconstruction
error (1st term) and soft constraints/penalizations for the examples that do
not maintain the appropriate distance (margin) from the separating hyper-
plane (2nd term). In the next step, we keep the basis G and weight matrix
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Figure 1: The projections and the SVM separating hyperplane using (a)
PCA (b) Semi-NMF bases. (c) Max-margin NMF bases (1st iteration)
and (d) Max-margin NMF bases (6th iteration) respectively.

H fixed and determine a hyperplane that maximizes the margin of the
classifier. The features are obtained by projecting the data points onto the
updated basis matrix.Since G and H are fixed, the optimization problem
in Eqn. 1 is simplified to that of a classical SVM which is solved using a
off-the-shelf SVM classifier. Finally we solve for the weight matrix H by
keeping G, w and b fixed.

During testing, the input test vector xtest is projected onto the basis
matrix to obtain the feature vector, ftest = GT xtest . The feature vector
is applied at the max-margin classifier which predicts the class ŷtest =
sign(wT ftest +b) where w,b,G are computed during training.
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Figure 2: Comparison of the performance of the proposed algorithm
with DNMF [2], Semi-NMF + SVM on different categories of Mediamill
dataset. The graph shows accuracies computed at different number of
bases k.
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