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Abstract

Hough forests have emerged as a powerful and versatile method, which achieves
state-of-the-art results on various computer vision applications, ranging from object de-
tection over pose estimation to action recognition. The original method operates in off-
line mode, assuming to have access to the entire training set at once. This limits its
applicability in domains where data arrives sequentially or when large amounts of data
have to be exploited. In these cases, on-line approaches naturally would be beneficial.
To this end, we propose an on-line extension of Hough forests, which is based on the
principle of letting the trees evolve on-line while the data arrives sequentially, for both
classification and regression. We further propose a modified version of off-line Hough
forests, which only needs a small subset of the training data for optimization. In the
experiments, we show that using these formulations, the classification results of classic
Hough forests could be reached or even outperformed, while being orders of magnitudes
faster. Furthermore, our method allows for tracking arbitrary objects without requiring
any prior knowledge. We present state-of-the-art tracking results on publicly available
data sets.

1 Introduction
Recently, several works have been proposed that show the applicability and usefulness of
the generalized Hough transform [3] for visual object detection (e.g., [14, 15, 18, 20]). Ap-
proaches based on the generalized Hough transform enjoy increased popularity due to their
simple nature while being able to achieve state-of-the-art results in several vision problems.

Although previous methods provide highly accurate results for various detection tasks,
they are limited by complicated parameter settings and by their slow computational speed in
both learning and evaluation. Gall and Lempitsky [11] as well as Okoda [19] alleviated these
practical disadvantages by incorporating the learning of the Hough transform as discrimina-
tive regression process into randomized decision trees. This leveraged the further usage of
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this method to a wide range of applications, such as, tracking [12], action recognition [26],
pose estimation [10], and medical imaging [7].

Hough Forests (HF) operate in off-line mode, which means that they assume having ac-
cess to the entire training set at once. However, this limits their application in situations
where the data arrives sequentially, e.g., in object tracking, in incremental or interactive
learning, in dynamic environments or large-scale learning. Essentially, the latter one be-
comes increasingly important as the number of digital images and videos is exploding. For
all of these applications, on-line methods inherently can perform better.

In this paper, we propose an on-line learning scheme for Hough forests, which allows
to extend their usage to further applications, such as the tracking of arbitrary target in-
stances or large-scale learning of visual classifiers. Hough forests are ensembles of ran-
domized decision trees, consisting of both classification and regression nodes, which are
trained recursively. Since this is a hard task to be done on-line, we follow a recent strand
of research [8, 23] that circumvents the recursive on-line update of classification trees by
following a tree-growing principle.

We let the trees grow on-line while the data arrives sequentially and we do this for both
classification and regression nodes. This requires to find reasonable splitting functions with
only a small subset of the data, which does not necessarily have to be a disadvantage when
building random forests. In particular, the accuracy of a tree ensemble does not only depend
on the predictive strength of the individual trees but also on the correlation between each
tree. Thus, however, subsampling the data, which is a necessity of our on-line method, can
lead to decreased correlation of the trees and increased accuracy, as we will see later. To this
end, we further derive a new but simple splitting procedure for off-line Hough forests based
on subsampling the input space on the node level. In summary, we propose two extensions
of the Hough forest framework: first, an on-line version of the method, where both the
codebook and the discriminative classifier can be trained on sequentially arriving data and,
second, a simple yet effective subsampling scheme that also leads to improved results for the
off-line approach.

We split our experimental evaluation into two parts. First, we demonstrate on three ob-
ject detection data sets that both, our on-line formulation and subsample splitting scheme,
can reach similar performance compared to the classical Hough forests and can even outper-
form them. Additionally, during training both proposed methods are magnitudes faster than
the original approach. Second, we demonstrate the power of our method for visual object
tracking. Especially, our focus lies on tracking objects of a priori unknown classes. We
present results on seven tracking data sets and show that our on-line HFs can outperform
state-of-the-art tracking-by-detection methods.

The remainder of the paper is organized as follows: In Section 2, we review the Hough
forest framework in more detail. Section 3 introduces on-line Hough forests. Additionally,
we present our subsampling scheme as a modification to the off-line HFs. Experimental
results are presented in Section 4, and Section 5 concludes the paper with a summary and an
outlook.

2 Hough Forests
The Generalized Hough transformation was originally used to detect general parametric
shapes, such as lines or circles [3]. Nowadays, this principle is used with great success
to learn the mapping from localized features into a Hough image using a codebook. Typ-
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ical approaches aggregate votes of local patches or “voting elements” in the Hough space,
where the voting elements may be image regions [18], interest points [15] or densely sam-
pled patches [11, 19]. Usually, the voting elements are clustered into a codebook, which is
further used for learning a classifier on labeled data. The actual detection is then performed
by searching for peaks in the Hough image.

For instance, the implicit shape model (ISM) proposed by Leibe et al. [15] first clusters
local image descriptors based on their relative location with respect to marked object cen-
ters and then trains a discriminative classifier. During testing, one can use the classifier in
accordance with the codebook entries to get probabilistic estimates for object center loca-
tions. The method can further be improved by re-weighting the votes within a max-margin
framework [18] or by smarter post-processing of the vote estimates [4, 20].

In contrast to previous methods, Hough forests [11, 19] simultaneously cluster image
features based on their spatial distribution and train a discriminative classifier using random-
ized trees [6]. Random forests were introduced by Breiman [6] and are ensembles of decision
trees F = {T1, . . . ,TT}, where T is the number of trees. Each decision tree is a function of
the form f (x;Θ) : X →Y , where Θ defines the parameters for all splitting nodes in the tree;
x ∈ X ⊆ Rd is a feature vector. During training, each tree is provided with a subset of the
data, consisting of labeled samples {xi,yi} ∈ {X ,Y}, where yi ∈ {1, . . . ,K} and K is the
number of classes. RFs are constructed in a recursive manner, where each node tries to find
a splitting function ξ (·) by optimizing the information gain

∆H =− |Il |
|Il |+ |Ir|

H(Il)−
|Ir|

|Il |+ |Ir|
H(Ir) , (1)

where Il and Ir are the subsets of samples falling in the left and right child nodes, respectively.
H(·) is chosen to either be the entropy −∑

K
k=1 pk · log(pk) or the Gini index −∑

K
k=1 pk · (1−

pk); pk is the probability of the current node to belong to class k. The trees stop growing if
the maximum depth is reached or if a node is pure, i.e., it contains only samples from one
class. Then, each leaf node collects the statistics of the samples falling in this node. In the
evaluation phase, the probability of a test sample x belonging to class k is given by

p(k|x) = 1
T

T

∑
t=1

pt(k|x) , (2)

where pt(·) is the estimate of class k in the leaf node of the tth tree for the test sample. As
stated in [6], one can define a classification margin ml(x,y) = p(y|x)−maxk∈Y,k 6=y p(k|x).
It follows that for correct predictions, ml(x,y) > 0 has to hold. Based on the margin ml ,
Breiman [6] defines the generalization error as GE = E(X ,Y)(ml(x,y)< 0) and showed that
GE has the upper bound

GE ≤ ρ̄
1− s2

s2 , (3)

where ρ̄ defines the mean correlation between two pairs of trees (ρ̄ is measured in terms
of similarity between the predictions of two trees) and s is the strength of the trees (i.e., the
expectation of ml(x,y) over the data distribution). That is, a low generalization error requires
strong, but also decorrelated trees. When training random forests, the trees are decorrelated
by sub-sampling the samples for each tree individually with replacement (a.k.a. bagging)
and by randomly selecting the split tests.

Hough forests [11] combine classification trees and regression trees within a single
framework. They use the labeled training images to extract patches in the form {Pi =
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(Ai,yi,di)}, where Ai is the image descriptor and consists of 32 channels, each a 16× 16
patch, which describes different properties of the image. The object label yi and the offset
vector di, which points to the object centroid and is undefined for negative patches, complete
a patch Pi. All patches are used to build the trees, where each node tries to find the best
split according to some optimality criterion. Hough forests define two different optimiza-
tion methods, one based on classification the other one on regression. Each node selects
randomly which of these criteria is used. The classification criterion is equal to that of the
standard random forests, i.e., the information gain (see Equation 1). The regression criterion
tries to minimize the variance of the offset vectors di for each of its child nodes as follows:

min ∑
Il

(dl
i− d̄l)+∑

Ir

(dr
i − d̄r) , (4)

where d̄l and d̄r are the means of all offset vectors di falling in the left and right child nodes,
respectively. Each leaf node estimates a probability about fore- and background equal to
Equation 2 and collects all offset vectors di, which fall in this leaf node.

For detection, a sliding window approach (also at different scales) is applied in combina-
tion with the generalized Hough transformation [3]. Patches Pi are extracted at each location
l in the test image and propagated through the Hough forest according to the appearance Ai
of the patch. All patches end up in leaf nodes of the forest, which have a set of offset vectors
DL and a probability of foreground CL stored. Each patch Pi then "votes" for an object center
in a 2D Hough image V by adding the value CL

‖DL‖ to the positions {l−di|di ∈ DL}. That
is, the offset vectors from the corresponding leaf nodes vote for an object center in the test
image with a weight corresponding to the probability of foreground.

Besides object detection, Hough forests have successfully been applied to action recogni-
tion [26], pose estimation [10], medical imaging [7] and robotics [25]. They have also been
applied to class-specific tracking [12], where an accurate model is learned off-line using
hand-annotated data of a predefined object class. The learned codebook is adapted on-line
for tracking a specific instance of that object class. That is, the object classes have to be
known beforehand, whereas our method can track arbitrary objects, which are a priori un-
known. Recently, Godec et al. [13] proposed a tracking method for non-rigid objects with
an on-line formulation of HFs including back-projection for a rough segmentation of the
tracked object. This segmentation improves the sequential updates of the algorithm, but they
build their trees completely random to their full size and just update the leaf node statistics
during tracking. In contrast, our approach builds the trees in an on-line fashion and also
updates the leaf node statistics.

3 On-line Hough Forests
Hough forests, as reviewed above, are off-line learners. That is, they assume having access
to all labeled training samples {xi,yi}N

i=1 at once. This eases the optimization but limits
their application in scenarios where the data arrives sequentially, such as object tracking or
robotics. In the following, we will show how to extend Hough forests to on-line learning,
where we assume that the individual samples {xt ,yt} are sampled i.i.d and sequentially from
an infinite pool of data. Each sample xt can only be observed once at time t by the learner
and is discarded afterwards. In other words, the learner never has access to all samples
concurrently.
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In order to let HFs grow in an on-line fashion, two essential ingredients of random forests
have to be done in an on-line manner. First, RFs use bagging to train the trees, which can,
however, also be done on-line [21] by updating all trees with the input sample k times,
where k ∼ Poisson(λ ). The second issue which has to be tackled, is the on-line growing
of the individual trees, which is less trivial because each tree is trained recursively using
hard splitting rules, making it difficult to correct errors on-line. We follow the principles
of [8, 22, 23], where the basic idea is to start with a tree consisting of only one node, which
is the root node and the only leaf at that time. The tree then starts collecting data and
propagating the samples {xt ,yt} to the leaf nodes. Each leaf node decides on its own, based
on a certain criterion (see below), whether to change itself to a splitting node and create two
new leaf nodes, or to keep being a leaf node and update its statistics. An overview of this
procedure is given in Figure 1.

It is easy to see that one of the main issues in this growing approach is to find a reasonable
splitting function ξ (·) with a limited set of data samples. Domingos et al. [8] tackle this
problem by relying on the so-called Hoeffding bound, which states that, with probability

1−δ , the true mean of a random variable r is at least r̄− ε , where ε =

√
R2·ln(1/δ)

2n ; n is the
number of samples available and R is the range of the random variable r. In contrast, on-
line random forests [23] continuously calculate the potential information gain ∆H = H(Ip)−
|Il |
|Ip|H(Il)− |Ir ||Ip|H(Ir) of randomly created node splitting functions. Ip, Il , and Ir are the sets

of samples of the parent, left child, and right child nodes, respectively. The node gets split
if ∆H exceeds a predefined threshold β and a minimum number γ of samples has been
processed. Although these methods have strong theoretical support, we will show in the
experiments that it even suffices to only count the number ni of samples that a node has seen
so far and split when ni > γ . That is, each leaf node in the trees collects the first γ data
samples arriving and, after that, generates several random split functions ξi(·). The split
function ξ ∗(·) that optimizes the impurity criterion of the Hough forests, which is either the
information gain for classification nodes (see Equation 1) or the variance of the offset vectors
di for regression nodes (see Equation 4), is chosen. Thus, when growing HFs in an on-line
fashion, we consider both settings for optimization, classification and regression nodes.

To sum up, each tree in the forest starts with only one leaf node N0
L , which is the root

node at that time (0 denotes the current depth of the tree and L stands for "leaf"). This
leaf node starts collecting samples {x,y} falling in it and builds its statistics about fore- and
background ‖{x|y=1}‖

‖x‖ . After seeing γ samples, the leaf node N0
L is transformed into a splitting

node N0
S (S now stands for "split") by finding an optimal splitting function ξ (·) (classification

or regression) on the available data samples {xt ,yt}, where t = 1 . . .γ . Two child leaf nodes
N1

L are created and the samples, which were already collected in the parent node N0
S are

propagated to the child nodes according to the new split function ξ (·). These samples can
then already be used for building the statistics in the newly created child nodes. This process
continues until a maximum depth of the tree is reached or no more training samples are
available. As in classic RFs [6] and its on-line version [23], no pruning is applied.

Modified Off-line Splitting In the end, this on-line growing scheme simply relies on a
subset of the training data

{
X̂ , Ŷ

}
⊂ {X ,Y}, which arrives sequentially in the on-line case.

Thus, we can also formulate a similar principle in the off-line case, where each splitting
node is optimized on such a subset of the data. The random nature of classic random forests,
i.e., the random splitting functions and the implemented bagging, has the primary goal of
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Figure 1: Flowchart of the proposed method: While labeled samples arrive on-line, each
tree is updated independently. Each sample is traversed down the tree and the leaf node
where it ends up is updated. Then the sample is discarded. If the splitting condition is met,
the updated node becomes a split node and creates two child nodes to which it passes its
collected statistics.

increasing the decorrelation ρ̄ between the trees in the ensemble, see Equation 3. By consid-
ering this fact, optimizing each node of the Hough forest on such a subset

{
X̂ , Ŷ

}
⊂ {X ,Y}

even makes sense to further increase ρ̄ . If the subset of the data still gives a reasonable repre-
sentation of the data set’s underlying structure, the strength s of the trees does not suffer too
much. Furthermore, in case of computer vision applications, the data representation is often
ambiguous. Thus, optimization on a subset of the data in the node level, can work against
overfitting on the training set and improve the generalization performance.

For that reasons, we propose a further modification of the learning procedure in the
off-line HFs by sub-sampling the available training set in each splitting node. The subset{
X̂ , Ŷ

}
is drawn uniformly from all training data available. Then, we optimize either the

classification problem or the regression, see Equations 1 and 4, respectively. After finding
an optimal splitting function ξ (·) on the sub-sampled data set, all available samples are
propagated to the newly created left and right child nodes accordingly. The only parameter,
which has to be defined, is the size γ of the subset

{
X̂ , Ŷ

}
.

4 Experiments
To show the benefits of the proposed approaches we demonstrate them for object detection
as well as for tracking. First, we compare the classic Hough forests with our proposed sub-
sampling and on-line methods for object detection. Then, we present tracking results, where
we demonstrate our on-line formulation of the Hough forests for several standard tracking
data sets1.

4.1 Object detection
In this section, we compare our two proposed methods with the original Hough forest im-
plementation for several object detection tasks. To this end, we chose three different data
sets, namely TUD-pedestrian [1], Weizmann-horses [5], and ETHZ-cars [16]. In the fol-
lowing, we denote our sub-sampling Hough forest with rsHF and the on-line extension with

1To allow for fair comparison, we used the original C++ code provided by [11], where we added our extensions.
The code can be downloaded from http://lrs.icg.tugraz.at/download.php
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Figure 2: Detection results for the two proposed methods oHF and rsHF, compared to the
classic Hough forest implementation. Precision-recall curves are shown for three different
datasets: TUD-pedestrian [1] (a), Weizmann-horses [5] (b), and ETHZ-cars [16] (c).

oHF. Our evaluation is based on precision-recall curves following the PASCAL overlap cri-
terion [9]. We used 15 trees with a maximum depth of 15 for all methods in each of the
experiments. Also the number of randomly created splitting functions was equal for all
methods and experiments and set to 2000.

Overall performance: In this experiment, our main intention is to compare the general-
ization performance of the methods on all three data sets. The parameter γ was set to 20 for
both rsHF and oHF. The resulting precision-recall curves are depicted in Figure 2. As can
easily be seen from the curves, both proposed methods, i.e., rsHF and oHF, can significantly
outperform the classic HF on the three datasets. While the improvement is actually very
high for the TUD and Weizmann data sets, one can only obtain a slight increase in perfor-
mance for the ETHZ data set. However, the results indicate that the random sub-sampling
and on-line growing of the trees increase the decorrelation ρ̄ of the trees, while still keeping
its strength s.

Experimental analysis: In addition, we investigate the overfitting effect of the classic HF
in this experiment in more detail and present results about the computational costs of our
proposed methods for the Weizmann-horses dataset. Furthermore, we compare the three
different splitting methods when a tree is grown on-line, i.e., the Hoeffding bound, the po-
tential information gain, and the minimum number of seen samples. In a first experiment,
we varied the number of samples used for training and the parameter γ . The resulting curves
are presented in Figure 3 (a) & (b). As can easily be seen from Figure 3(a), rsHF and oHF
can outperform the classic HF on this dataset even for smaller amounts of available training
data. The second plot shows the influence of the parameter γ . As one can see, too low or too
high values decrease the predictive performance of rsHF and oHF. Please note that setting
γ to the maximum value, i.e., the amount of data available in each node, yields the classic
formulation of the Hough forests. For the on-line version (oHF), the strong decrease of per-
formance for higher values of γ can be explained by the fact that oHF stops growing if the
number of samples in a leaf node cannot exceed γ anymore. In contrast, rsHF just cannot
perform the sub-sampling anymore, but the tree can still grow. Figure 3(c) shows the influ-
ence of the choice of the split function, as described above. Here, we cannot see significant
differences in the three methods except the effort of finding suitable parameters, which is
easier with our simple method (only the parameter γ has to be defined). In a last experiment,
we investigated the computational cost for rsHF, oHF, and the classic Hough forests. The
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Figure 3: Figures (a) and (b) show average precision values when the number of samples or
the parameter γ are varied, respectively. The effect of different splitting methods is shown in
(c) and the training time for oHF, rsHF, and cHF is shown in (d).

results, shown in Figure 3(d), show that both proposed methods significantly outperform the
original HF in the necessary time for building the forest.

4.2 Object tracking
Next, we evaluate our on-line formulation of Hough forests (oHF) on several standard track-
ing sequences. We compare with on-line random forests (ORF) [23], which builds the base
of our approach, and two other state-of-the-art trackers, namely Multiple Instance Boosting
(MILB) [2] and PROST [24]. We do not compare to [12] because this approach requires
class-specific knowledge of the tracking object in terms of labeled data, whereas we do not
assume any prior knowledge about the target object. For evaluation, we chose the percentage
of correctly predicted frames, where we calculate the PASCAL overlap and define a correctly
predicted frame for overlaps bigger than 0.5. We resized the tracking sequences such that
the bounding box of the target object in the first frame has around 100px in height or width.
In this way, we can ensure that the extracted patches contain reasonable information.

We follow the tracking procedure from [17] and perform "one-shot" learning of the on-
line HF with the first frame of a sequence by virtually warping the image five times. We
take 100 positive and 500 negative patches from these images and update the model. Then,
we define a search area in the subsequent frame, which has twice the size of the labeled
bounding box from the first frame. Within this area, the Hough image is calculated and
a maximum search finds the location l with the highest confidence c for the target object.
This search in the 2D Hough image can also be performed in a 3D Hough space, allowing
the algorithm to handle scale changes. We simply calculate additional Hough images in the
scales st ± 0.05, where st denotes the current scale at time t relative to the scale of the first
frame in the sequence. According to the value of c, we differentiate between three different
cases: (i) if c > Θ1, we update the center of the target bounding box to the position l and, as
appropriate, the current scale st and the size of the bounding box. Additionally, we extract
10 positive and 10 negative patches from the current frame and update the on-line Hough
forest. (ii) if Θ1 > c > Θ2, we also update the current position and scale of the model, but do
not update the model itself with newly extracted patches. (iii) if Θ2 > c, we neither update
the model nor its position and scale [17]. The thresholds Θ1 and Θ2, where Θ1 > Θ2, are set
to multiples of the mean values of the confidence c for the first few frames of a sequence.
For all experiments we use 8 trees with a maximum depth of 8 and set the parameter γ to 20.

As can be seen from the tracking results of oHF in Table 1, we can compete with all
other proposed tracking algorithms and can outperform them in most of the cases. The
table also shows that the Hough forest framework brings an enormous boost in tracking
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Sequence oHF ORF [23] MILB [2] PROST [24]
David 93.5 72.0 60.0 80.0
Facceocc2 90.6 65.0 96.0 82.0
Girl 99.0 96.0 57.0 89.0
board 95.3 10.0 36.6 75.0
box 93.7 28.3 7.6 91.4
liquor 94.0 54.0 21.0 85.4
lemming 82.3 17.0 83.0 70.5
Average 92.6 48.9 51.5 81.9

Table 1: Tracking results for several sequences of the proposed methods. Here, we show the
percentage of correctly predicted frames. (Best performing methods are marked boldface
and second best methods are underlined)

(a) (b) (c)

(d) (e) (f)
Figure 4: Results from all proposed methods in difficult tracking situations (a-c). Results of
oHF and MILB [2], both considering scaling, are depicted in (d-f).

performance compared to on-line random forests [23]. We can even outperform PROST,
which includes optical flow in the tracking procedure. Some illustrative results showing
rather difficult tracking situations (occlusions, motion blur) are depicted in Figure 4(a-c).

Finally, we want to show the treatment of different scales of our proposed method. As
we could not find many comparable works, which include scaling or present results about
scaling, we only compare with the MILB framework from Babenko et al. [2] on the David
sequence. We present some qualitative results in Figure 4(d-f), where we depict some rep-
resentative frames comparing both methods and also quantitative results by measuring the
mean offset center location. We observed an error of 6.9px for our method, whereas MILB
has an error of 10.1px on this sequence.

5 Conclusion
This paper introduced an on-line extension of Hough forests, which we successfully applied
to object detection and tracking. We integrated ideas from evolving decision trees in order to
grow both classification and regression functions on-line, resulting in a powerful and com-
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putationally efficient learning framework. We further proposed a novel growing procedure
of the classic Hough forests, where, similar to the on-line version, each node is optimized on
a small subset of the available data. This enforces the decorrelation between the trees and
reduces overfitting in the structure of the trees. Thus, for several detection tasks an improved
classification performance could finally be obtained. The experiments on three different
data sets show that both the on-line and subsample formulations can outperform the classic
Hough forests, while both are being magnitudes faster. Furthermore, we applied our method
for standard tracking benchmark data sets and were able to show more than competitive re-
sults compared to state-of-the-art tracking-by-detection approaches. In future work, we plan
to apply our algorithm to further vision tasks and to analyse the overfitting issue in more
detail as well as work on improved splitting criteria for Hough forests.
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