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Abstract

Despite the fact that there is critical grammatical information expressed through fa-
cial expressions and head gestures, most research in the field of sign language recogni-
tion has primarily focused on the manual component of signing. We propose a novel
framework for robust tracking and analysis of non-manual behaviours, with an appli-
cation to sign language recognition. The novelty of our method is threefold. First, we
propose a dynamic feature representation. Instead of using only the features available
in the current frame (e.g., head pose), we additionally aggregate and encode the feature
values in neighbouring frames to better encode the dynamics of expressions and gestures
(e.g., head shakes). Second, we use Multiple Instance Learning [12] to handle feature
misalignment resulting from drifting of the face tracker and partial occlusions. Third,
we utilize a discriminative Hidden Markov Support Vector Machine (HMSVM) [1] to
learn finer temporal dependencies between the features of interest. We apply our signer-
independent framework to segmented recognition of five classes of grammatical con-
structions conveyed through facial expressions and head gestures: wh-questions, nega-
tion, conditional/when clauses, yes/no questions and topics, and show improvement over
previous methods.

1 Motivation
Speech recognition technologies have become standard components of modern operating
systems, allowing average users to interact with computers verbally. Such technology has
even found its way into the car industry, enabling drivers to make phone calls, play music,
find directions to the nearest gas station, etc., without having their hands leave the wheel. It
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Figure 1: Sample tracked frames under challenging scenarios (partial occlusions, fast move-
ments, and glasses), using the adopted face tracker [10]. Here, red dots represent tracked
landmarks. The predicted 3D head pose is shown in the top left corner of each frame

will not be long before every modern device includes an integrated speech recognition mod-
ule. Unfortunately, technology for the recognition of sign language, which is widely used
by the Deaf, is not nearly as well-developed, despite the many potential benefits of such
technology. First of all, technology that automatically translates between signed and writ-
ten or spoken language would facilitate communication between signers and non-signers,
thus bridging the language gap. Secondly, such technology could be used to translate sign
language into computer commands, favouring the development of additional assistive tech-
nologies. Moreover, it could facilitate the efficient archiving and retrieval of video-based
sign language communication and could assist with the tedious and time-consuming task of
annotating sign language video data for purposes of linguistic and computer science research.

However, sign language recognition poses many challenges. First, many of the linguistic
components of a sign that must be recognized occur simultaneously rather than sequentially.
For example, one or both hands may be involved in the signing, and these may assume
various hand shapes, orientations, and types of movement in different locations. At the same
time, facial expression may also be involved in distinguishing signs, further complicating
the recognition task (see Figure 1). Secondly, there is variation in production of a given
sign, even by a single signer. Additional variation is introduced by effects of co-articulation,
meaning that the articulation of a sign is influenced by preceding and following signs, and
by movement transitions between signs (sometimes referred to as “movement epenthesis”).
In spite of these challenges, many methods [2, 3, 5, 27, 28, 31] have shown promising results
in recognizing manual components of signs.

Furthermore, in sign language, critical grammatical information is expressed through
head gestures (e.g., periodic nods and shakes) and facial expressions (e.g., raised or lowered
eyebrows, eye aperture, nose wrinkles, tensing of the cheeks, and mouth expressions [11,
16]). These linguistically significant non-manual expressions include grammatical markings
that extend over phrases to mark syntactic scope. For example, in wh-questions (which
involve phrases such as who, what, when, where, why, and how), the grammatical marking
consists of lowered eyebrows and squinted eyes that occur either over the entire wh-question
or solely over a wh-phrase that has moved to a sentence-final position. In addition, there may
be a slight, rapid side-to-side head shake over at least part of the domain of the wh-question
marking. With negation, there is a relatively slow side-to-side head shake that co-occurs
with a manual sign of negation (such as NOT, NEVER), if there is one, and may extend
over the scope of the negation, e.g., over the following verb phrase that is negated. The
eyes may squint or close. The non-manual sign for yes/no questions extends over the entire
sentence and involves raising the eyebrows, widening the eyes and jutting the head forward.
Conditional/when sentences are two part constructions with the relevant non manual marking
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only over the first part (i.e., over the “conditional” or “when” clause). This is characterized
by raised eyebrows, wide eyes, head forward (or back) and tilted to the side, followed by
a pause, after which the eyebrows and head return to neutral position. Lastly, topics are
characterized by raised eyebrows, wide eyes, head tilted back, and an optional nod.

Sign language recognition cannot be successful unless these non-manual signals are also
correctly detected. For example, depending on the accompanying non-manual markings, the
sequence of signs JOHN BUY HOUSE could be interpreted to mean any of the following:
(i) “John bought the house." (ii) “John did not buy the house." (iii) “Did John buy the house?"
(iv) “Did John not buy the house?" (v) “If John buys the house...".

Motivated by the grammatical importance of head gestures and facial expressions, we
present a novel framework for robustly tracking and recognizing such non-manual markings
associated with wh-questions, negative sentences, conditional/when clauses, yes/no ques-
tions and topics. Our method extends prior work in [14], where a face tracker first locates
facial landmarks and then appearance and head pose features are fed to a Support Vector Ma-
chine (SVM) for classification, while making a number of significant contributions. These
allow us to recognize a wider class of non-manual markers in segmented sequences1 of
American Sign Language (ASL). First, once we track the facial landmarks, we focus on an
extended rectangular region of interest (ROI), which includes the eyes, eyebrows and nose,
so as to capture a wider range of upper face expressions, e.g., nose wrinkling and cheek
tensing. Second, we divide this ROI into a set of smaller patches (henceforth referred to as
parts), which correspond roughly to areas of the face relevant for these specific grammatical
expressions, e.g., inner and outer eyebrows. We extract from each part a histogram of Local
Binary Patterns (LBP) [18]. These are effective for texture classification [22, 32], faster to
compute and more robust to illumination variations than SIFT, which is used in [14]. Third,
we handle feature misalignment, arising from tracking inaccuracies and partial facial occlu-
sions, by computing a Multiple Instance Feature (MIF) [12] for each part. Fourth, in addition
to the head pose and texture features per frame, we explicitly calculate eyebrow height. The
final feature descriptor is augmented with a “summary" of the features of future and past
frames sampled at regular intervals in the neighbourhood of the current frame, which we call
Oracle Features (see Figure 2). This representation aims to encode the dynamic nature of fa-
cial expressions and head gestures encountered in non-manual grammatical markers. Lastly,
by utilizing a discriminative, margin-maximizing, Hidden Markov Support Vector Machine
(HMSVM) [1, 8] our method outperforms generative Hidden Markov Models (HMMs) [21],
which can over-fit the training data in the absence of sufficient training examples.

2 Previous Work
As already mentioned, most research on computer-based sign language recognition has fo-
cused on the manual components of signing [20]. More specifically, [23] uses color tracking
and HMMs, while the authors of [28] split the manual signs into independent movement and
hand shape channels to handle simultaneous manual events. Bauer and Kraiss [2] break down
signs into sub-units using unsupervised clustering. In [29], the authors develop a method that
quickly adapts to unknown signers, in an attempt to handle interpersonal variance. Similarly,
the authors of [33] use a background model to achieve accurate feature extraction and then
perform feature normalization to achieve person independence. Martinez and Ding [7] first

1For each video sequence we only attempt to classify segments of frames containing non-manual markers of one
of the five classes mentioned.
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perform 3D hand reconstruction and then represent hand motions as 3D trajectories. Lately,
we have even seen the emergence of some weakly supervised methods that attempt to learn
manual signs from TV subtitles [3, 5].

Only recently have researchers begun to address the importance of facial expressions for
sign recognition systems [19]. An extensive review of recent developments in visual sign
recognition, together with a system that captures both manual and non-manual signs, is pro-
vided by [30]. However, it requires the signer to be wearing a glove with coloured markers to
enable robust hand tracking and hand posture reconstruction. Most importantly, the tracked
facial features are not used to recognize facial expressions that have grammatical meaning.
In [25, 26] a 3D deformable model for face tracking is presented, which emphasizes outlier
rejection and occlusion handling at the expense of slower run time. The system is used to
demonstrate the potential of face tracking for the analysis of facial expressions found in sign
language, but is not used for any actual recognition. Lastly, in [14] we used spatial pyra-
mid features and an SVM to recognize segmented wh-questions and negative sentences only.
In the previous approach, we did not exploit temporal dependencies between features. The
method proposed here is able to distinguish wh-questions and negative sentences, as well
as topics, conditional/when clauses and yes/no questions, by encoding feature dynamics and
modelling temporal dependencies.

3 Feature Extraction and Representation
Essential to our recognition framework is the ability to accurately track facial landmarks of
the signers and estimate their 3D head pose (see Figure 1). For this we use the tracking
algorithm of Kanaujia et al. [10] that is based on Active Shape Models (ASM) [6]. An ASM
is a statistical model of facial shape variation, obtained through the application of Principal
Component Analysis (PCA) and Procrustes Analysis on an aligned training set of facial
shapes. The adopted tracker [10] can track in real time the positions of 79 facial landmarks
(e.g., nose, eyes, etc.), utilizing a mixture of experts to map landmark configurations to
predictions of head pose (we skip the details, since the actual tracker is not our focus).

3.1 Tracking eyebrow height and head pose
From the tracked landmarks we can compute the 2D position of the signers’ left, (xL,yL),
and right inner eyebrows2, (xR,yR), and their nose tip3, (xN ,yN), in each frame. The eyebrow
height at time t, denoted as ht , is derived as the average Euclidean distance between the nose
tip and each inner eyebrow:

ht =
1
2
×
(√

(xL− xN)2 +(yL− yN)2 +
√

(xR− xN)2 +(yR− yN)2

)
. (1)

For robustness to tracking noise, we filter the computed (x,y) positions of the key points
(eyebrows and nose tip) using a Kalman filter [9], assuming linear state dynamics with Gaus-
sian noise, w. The system state, xt , includes the position, pt = [xL,yL,xR,yR,xN ,yN ]

T , and
the velocity, vt = [ẋL, ẏL, ẋR, ẏR, ẋN , ẏN ]

T , of these key points at time t. The dynamic process
is governed by:

xt+1 = Akxt +wt , (2)
2We use the 4 innermost eyebrow landmarks
3We use the lower 8 nose landmarks to compute the nose tip position
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with

At+1 =

(
1 δ t
0 1

)
and wt ∼N (0,Q) . (3)

The observation process is modelled as:

zt = Hxt +ut , (4)

where H = [1,0], zt is the observation as obtained by the face tracker and ut ∼N (0,R) is
the observation noise at time t. A similar model is also used to filter the predicted head pose.
In this case the state vector includes the 3D head pose, at = [aP,aY ,aT ]

T , and the head pose
velocity ȧt = [ȧP, ȧY , ȧT ]

T , where P, Y and T stand for pitch, yaw and tilt angles respectively.

3.2 Texture Features

Once we track the signer’s head, we compute a bounding box of the tracked landmarks
around the eyes, eyebrows and nose, forming an extended ROI from which we compute
Local Binary Patterns (LBP) [18]. Put simply, LBPs are binary codes that characterize the
texture in the neighbourhood of a pixel by thresholding the value of each neighbour by the
gray-scale value of the central pixel (set to 1 if larger, set to 0 otherwise) and interpreting the
pattern as a binary number, which is converted to a decimal code. Typically, LBP codes are
first computed for each pixel in an image patch and then the normalized histogram of LBP
codes is generated and used as a texture descriptor of the patch.

3.3 Multiple Instance Feature

Feature misalignment sometimes occurs; i.e., the same features do not always fire up in all
positive detection windows, often because of object pose variation. Lin et al. [12] introduced
Multiple Instance Features (MIF) for boosted learning of part-based human detectors, where
an initial boosting seeds the location of an object part from translated candidates, and then
multiple instance boosting pursues an aggregated feature for each part. So an MIF is an
aggregation function of instances. More specifically, given a classifier, C, it is the aggregated
output, y, of a function, f , of classification scores, {y j}J

j=1, on multiple instances, {x j}J
j=1:

y = f (y1,y2, ...,yJ) = f (C(x1),C(x2), ...,C(xJ)). (5)

Each bag, xi, consists of a set of instances, {xi j}N
j=1. For each classifier C, the score yi j

of an instance xi j can be computed as: yi j = C(xi j). The probability of an instance xi j to
be positive is given by the logistic function: pi j =

1
1+e−yi j . In [13], the multiple instance

learning problem is formulated as the maximization of diverse density, which measures the
intersection of the positive bags minus the union of the negative bags.

The diverse density is probabilistically modelled using a Noisy-OR model to harness the
multiple instance learning problem. The probability that a bag xi is positive is formulated
as pi = 1−∏

Ni
j=1(1− pi j). The Noisy-OR model means the probability of the bag to be

positive is high when this bag includes at least one instance with high probability to be
positive, otherwise the bag is negative when all the instances inside have low probability of
being positive. Following [12], the geometric mean is applied to avoid the numerical issues
when Ni is large, so the formula is modified to pi = 1−∏

Ni
j=1(1− pi j)

1/Ni . The multiple
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Figure 2: Plot of head yaw angle over time for a sequence containing negation (red segment
marks when the non-manual marker occurs), also illustrating computation of yaw oracle
features for frame 60 (see Section 3.4)

instance aggregated score yi is computed from the instance scores yi as:

yi = log((
Ni

∏
j=1

(1+ eyi j)1/Ni)−1), (6)

which comes from the logistic relation between pi and yi: pi =
1

1+e−yi . In this paper each yi
is an MIF of texture, obtained by learning weak classifiers (decision tree stumps) on the LBP
histogram bins of a part (a part is a patch within the face ROI). See [12] for further details.

3.4 Oracle Features
Facial expressions and gestures are dynamic processes, especially those that have a grammat-
ical meaning in ASL. It is often difficult even for ASL signers to detect non-manual markers
using static frames alone. For example, one key component of the non-manual marking of
negation is a head shake, whose presence in a sequence cannot be detected solely by looking
at the head pose in any single frame. Instead, one needs to have available a “snapshot” of the
variation of head yaw angle over time, in order to detect the turning of the head in one way
and then in the opposite way.

Therefore, in order to strengthen the representational power of all features (texture MIF,
head pose, eyebrow height), we encode information from neighbouring frames. For each
frame we sample the feature values at regular offsets (sample points) from the current frame
(anchor point). Before sampling, we compute a weighted average (by means of a Gaussian
curve) of the feature value in a small window around the anchor and each sample point. This
is illustrated in Figure 2 where an example anchor point is shown in black and example sam-
ple points are shown in blue. The ellipses indicate the size of the averaging neighbourhoods.
Thus, the final feature descriptor of each frame is formed by combining features in that frame
with the features obtained from the neighbourhood of the respective sample points. We refer
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to these augmented feature vectors as Oracle features because for every frame they encode
the dynamic evolution of feature values. We show that this richer feature representation
allows our method to achieve higher classification accuracy (see Section 5).

4 Hidden Markov Support Vector Machine
In the traditional supervised classification setting, we have a set of labelled training data
D = {(xi,yi)}N

i=1, where xi ∈ ℜd is the d-dimensional feature vector of training sample i
and yi ∈ ℜ is its corresponding class label. The goal is to learn a mapping function from
inputs to outputs F : ℜd →ℜ that minimizes some loss function, typically a 0/1 loss. In the
sequence tagging problem we have sequences of feature vectors and for each one we have a
sequence of corresponding outputs: D = {(x j

i ,y
j
i )| j = 1, . . . ,J}N

i=1, where J is the length of
the ith sequence. Note that sequences need not have the same length. The goal in this setting
is to predict the class labels of all instance within each sequence.

A popular model used in sequence tagging problems (most notably for speech recogni-
tion) is the Hidden Markov Model (HMM) [21]. Despite its success, the HMM has certain
limitations. First of all, it assumes conditional independence between observations when
given the current state; an assumption that can be too restrictive for certain problems where
there are complex feature interactions. Secondly, HMMs are generative models. During
their non-discriminative training, the goal is to learn model parameters that maximize the
likelihood of fitting the given training data, instead of optimizing for accurate classification
(although recently there has been interest in alternative methods for training [31]).

Altun et al. [1] proposed the Hidden Markov Support Vector Machine (HMSVM), which,
like the HMM, models the interactions between features and class labels, as well as inter-
action between neighbouring labels within a sequence. Unlike HMMs, the HMSVM model
is trained in a discriminative margin-maximizing learning procedure. This means that it can
achieve better generalization performance on test data, hence higher accuracy. Similar to
the standard Support Vector Machine (SVM) [4], the HMSVM can also learn non-linear
discriminant functions via the kernel trick.

Given a feature sequence x = {x j}J
j=1, where x j are instances within the sequence the

model predicts the corresponding tag sequence y = {y j}J
j=1 using [1]:

y = argmax
y∈Y

(
J

∑
j=1

(
K

∑
k=1

< x j,wy j−k,...,yK >+< φtrans(y j−k, . . . ,yK),wtrans >)) , (7)

where wy j−k,...,yK is an emission weight vector modelling interactions between features and
kthorder observations, and wtrans is the transition weight vector modelling transitions be-
tween neighbouring tags. Discriminative training aims to minimize the number of misclas-
sified tags, while maximizing the separation margin, hence the training objective is [1]:

min{ 1
2 wT w+ c

J ∑
J
j=1 ξ j} (8)

s.t.: z j(y)(< w,Φ(x j,y)>+θ j)≥ 1−ξ jξ j ≥ 0 ,∀ j = 1, . . . ,J ,∀y ∈ Y , (9)

where c is a parameter that controls the penalty of misclassification trading off training error
and margin size. Joachims et al. proposed the cutting plane algorithm [8] which offers a sig-
nificant speed-up in the training time of HMSVMs over the original working set algorithm
of [1]. In our framework, from each frame in each segmented sequence, we use the oracle
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feature representation of the eyebrow height, the head pose and the multiple instance texture
features, with their corresponding class label, and train a one-vs-all HMSVM model4. Se-
quences in our training set contained no overlapping non-manual markers, so we only needed
one model to tag each frame in the segmented sequence. Despite this, our method can eas-
ily generalize to sequences with overlapping non-manual markers by training n one-vs-all
models (one for each class) and running them in parallel on each sequence.

5 Experimental Results
All experiments are based on a linguistically annotated corpus5 of ASL (as produced by
native signers). This publicly available corpus, including 15 short narratives plus hundreds of
additional elicited utterances, includes multiple synchronized views of the signing (generally
2 stereoscopic front views plus a side view and a close-up of the face), which have been
linguistically annotated using SignStreamTM [15, 17] software, which enables identification
of the start and end points of the manual and non-manual components of the signing.

From this corpus we selected training and testing sets of 32 and 13 video clips, respec-
tively, of isolated utterances, extracting the segments containing non-manual markers of the
classes of interest. Certain sequences contained multiple non-manual markers but there was
no overlap between them. The exact composition of these sets per class is shown in Table 1.
Both sets contained three different native signers.

Using the methods described in previous sections, we tracked the signers’ head, extract-
ing their head pose and computing their eyebrow height. These were post-processed with a
Kalman filter for more accurate tracking. From the filtered head pose, we compute the head
pose derivative per frame, to avoid learning a dependence on the initial head position of a
signer. Eyebrow height is also normalized by the height in the first frame of each sequence
and then we compute the height derivative, in order to normalize for subjects of different
face proportions and distance from the camera. For each frame we compute oracle features
as explained in Section 3.4. We use 5 sample points, offset at 0, +5, +10, +15 and +20
pixels from the current frame respectively, averaged over a 5 frame window, resulting in a
20-dimensional descriptor of head pose (pitch, yaw, tilt) and height variation per frame.

Before extracting texture features from the face ROI, we align all images, rotating frames
by the average of the tilt angle and the angle between the centroids of the two eyes, as
computed from the ASM landmarks. Faces were normalized by cropping frames to 64x64
pixels [24]. The face ROI is divided into a 4x4 cell grid with each cell being 16x16 pixels.
From each cell we compute normalized histograms of uniform LBP features [18] using 8
samples and a radius of 1 pixel. For purposes of computing MIF [12], we consider each cell
being one facial part (so we have 16 parts per frame) and translate each cell in a regular grid
around its original position, computing additional LBP features. The collection of features
for a given part form a bag of instances which we convert to a 5-dimensional MIF score, one
for each class of non-manual markers. The idea is that if a positive part, with respect to a
class label, is misaligned (as a result of tracking error or partial occlusion), as we translate
it around its neighbourhood and compute instances of LBP features, at least one of these
instances will capture features from a correct part placement, and the bag will still be positive
for that class. As in the case of head pose and eyebrow height, we compute oracle features
for the LBP MIF. Here, to avoid increasing feature dimensionality too much, we only use

4www.cs.cornell.edu/People/tj/svm_light/svm_hmm.html
5Collected at Boston University, searchable via: http://secrets.rutgers.edu/dai/queryPages
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Class Training Testing
Set Set

C/W 4 (292) 2 (158)
Neg 8 (532) 4 (258)
Top 9 (249) 4 (86)
Wh 8 (492) 5 (351)
Y/N 4 (262) 2 (172)

Table 1: Number of segmented se-
quences per class in datasets (total
number of frames in parenthesis)

True Predicted Class
Class C/W Neg Top Wh-Q Y/N
C/W 100% 0 0 0 0
Neg 0 75% 0 25% 0
Top 0 0 100% 0 0
Wh-Q 0 0 0 80% 20%
Y/N 0 0 0 0 100%

Table 2: Confusion matrix of HMSVM segmented
recognition using oracle features of LBP-MIF, head
pose and eyebrow height

% Correct classification
HMM 70.6%
HMSVM 88.2%
HMSVM + non-MIF LBP 82.4%
HMSVM + MIF LBP + non-oracle 76.5%

Table 3: Evaluation of models showing the benefit of discriminative HMSVM with the pro-
posed feature representation that handles feature dynamics and feature misalignment

3 sample points, offset at 0, +5 and +10 pixels from the current frame respectively, also
averaged over a 5 frame window, resulting in a 240-dimensional texture descriptor.

The three sets of features (pose, height and texture) are concatenated into one feature
vector and we train an HMSVM. Because of our small training set, we first optimize the
parameter c using 3-fold cross validation on the training set, ensuring that each fold contains
at least one sequence from each class, before evaluating on the test set. The recognition ac-
curacy of the HMSVM model is summarized in Table 2. Analysis of the results revealed that
for the wh-question sequence that is misclassified as a yes/no question the signer’s head is
rotated to the side, causing an incorrect estimation of the eyebrow height. Most importantly,
this rotation causes a significant change in the appearance of the face ROI since most of the
training images are frontal views. We expect to be able to overcome this problem by using
training data that includes such cases of non-frontal faces. Additionally, our method mis-
takes a negative sequence for a wh-question. In this sequence there is a clear head shake that
our framework can capture and which is characteristic of negation. However, there is a head-
shake – albeit somewhat different in character – that frequently occurs with wh-questions,
as well as some degree of furrowing of the brows that occurs with both constructions. The
model failed on this case, possibly because of insufficient training examples exhibiting this
combination of eyebrow appearance and head shaking.

In order to compare the HMSVM with the HMM, we also trained 5 HMMs, one for each
class, classifying test sequences as belonging to the class whose HMM yields the highest
probability. The number of states of each HMM was decided using 3-fold cross validation.
Results are shown in Table 3. Note that with our small dataset, the generative HMM fails
to outperform the discriminative HMSVM model. In the same table we also show the result
of an experiment where we used oracle pose and height features with non-MIF oracle LBP
features and an HMSVM recognizer (HMSVM + non-MIF LBP). Note that this model per-
forms worse, showing that the MIF indeed help improve accuracy. Using non-oracle features
(HMSVM + MIF LBP + non-oracle) also hurts performance, as expected, given the dynamic
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dependence of features relevant to recognition of facial expressions and non-manual ASL
grammatical markers in particular.

6 Discussion
We presented a novel framework for robust real time face tracking and facial expression anal-
ysis from a single uncalibrated camera. We demonstrated that our framework is successful at
isolated recognition of wh-questions, conditional/when clauses, yes/no questions, negation
and topics in segmented video data. As demonstrated by our experimental results, the key
to the success of our method lies both in the discriminative recognition model (HMSVM) as
well as in the rich feature representation that encodes feature dynamics and is able to handle
feature misalignment.

As future research, we first aim to improve the face tracking algorithm for more accurate
height estimation and better occlusion handling, as well as exploring more complex learning
models. Furthermore, we wish to extend this framework to continuous recognition of non-
manual markers and to go beyond simply distinguishing among a small set of candidate
non-manual markings to recognition of a larger set of expressions that often differ from each
other in subtle ways. Such a system will have more practical applications as it will not
require the preprocessing step of sequence segmentation to extract the segment containing
some non-manual marker that has previously been labelled by human annotators.
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