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Abstract

We address the problem of unsupervised segmentation of textural images by rely-
ing on morphological image representations and active contours. More precisely, start-
ing with the assumption that textures are statistical ensembles of local image structures,
known as textons, we first suggest to represent a texture image through a tree of ellipses,
which are derived from the level lines of the image; we then investigate the statisti-
cal properties on the tree of ellipses and finally achieve a segmentation of the texture
image by grouping all the ellipses into several subsets according to some statistical mea-
surements. The grouping process is formulated as an energy minimizing problem and
the solution is obtained by evolving an active contour based on Kullback-Leibler (KL)
divergence through a fast global minimization method. Thanks to the proposed ellipse-
based features, the segmentation method can integrate local and global information in
the image. The experiments on both synthesized and natural texture images validate the
approach.

1 Introduction
Texture plays an important role in human visual perception and offers crucial cues for solv-
ing a wide range of computer vision problems, such as image segmentation or scene analysis.
The segmentation of texture is a key problem in computer vision and image understanding,
the objective of which is to partition an image into several regions characterized by homo-
geneous texture attributes. Over the course of the past 40 years, numerous studies have been
performed for texture segmentation, see [3, 4, 15, 17, 22, 23]. In this paper, we address
the issue of structured texture segmentation, starting with the assumption that textures are
statistical ensembles of local image structures, also known as textons [15, 25].

In the literatures, many models have been proposed to analyze and segment textures
by using structured approaches. Among those, the early work of Beck et al. [3] argued
that textural segmentation occurs on the basis of the distribution of simple properties, such
as brightness, color, size, the slopes of contours and lines of the elemental descriptors, of
“texture elements". Julesz [15] proposed to use textons, a set of empirical texture features
including elongated blobs, line ending or terminators, for computational texture modeling,
and the segmentation of texture was consequently achieved through these features. In [25],
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Zhu et al. provided a computational model of textons by relying on Gabor base functions
and a specified vocabulary of texton templates. Recently, Todorovic et al. [1, 22] suggested
to extract explicit textural elements from hierarchical segmentation tree and made use of
them for texture segmentation. These approaches provide impressive segmentation results
on highly structured texture images. However, one main disadvantage of such methods is
that the computation or detection of such textons is not trivial itself. Moreover, modeling the
interactions between textons may involve heavy computation.

The study presented in this paper is inspired by works in mathematic morphology, more
precisely, by granulometry [18, 21], which characterize textures relying on responses to
morphological filtering with user-specified structuring elements of increasing size. The seg-
mentation of synthetic and simple textural images can be achieved by partitioning the image
according to some statistics of the granulometry [10, 11, 18], but it fails at describing com-
plicated and highly structured textures [11]. Instead of using structuring elements and im-
proving the discriminative powerful, alternative approaches have been proposed to analyze
textures based on connected operators which perform directly on the level lines of images,
see [12, 13, 24]. The main motivation of this paper is to investigate the granulometry-like
approach in the context of texture segmentation.

(a) (b) (c)

Figure 1: Represent an image by a tree of ellipse. (a) an original texture image; (b) a subset
of its level lines; (c) the image reconstructed from the tree of ellipses, where each shape, i.e.
the interior of a level line, is replaced by an ellipse.

Along the line of textons, we first suggest to represent textures by a tree of ellipses,
which are derived from the level lines of images and can be regarded as explicit textons,
see Figure 1 for a preliminary graphical illustration. Observe that the ellipse-based repre-
sentation in Figure 1(c) has very similar visual appearance to the original image. As we
shall see in the following sections, the tree of ellipses of an image can be computed rapidly
and efficiently, thus the proposed approach can overcome difficulties in the detection of tex-
ture primitives or texture elements as encontered in [1, 22]. Based on this representation,
textures are subsequently characterized by geometric properties of and by relationships be-
tween these ellipses. Texture segmentation is performed by grouping these properties in a
unsupervised way. Specifically, the grouping step benefits from an active contour model
based on Kullback-Leibler (KL)-divergence similar to the one of [14].

The contribution of this paper is to propose a new texture segmentation approach by
relying on an ellipse-based texture representation, where ellipses are regarded as texture
elements. We argue that natural texture images can be approximated well by a tree of ellipses
and the boundaries between two texture regions can be identified by grouping these ellipse
ensembles according to some statistical properties with an active contour model. This work
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somehow fills the gap between granulometry and texton theory on segmentation. Thanks to
the ellipse-based features, which might be non-local, the segmentation method can integrate
local and global information in the image. Furthermore, the proposed approach is flexible: it
allows to segment images subjected to scaling and rotations and it is robust to illumination
changes inside the image. In this paper, we also adapts the KL-divergence based active
contour model to multi-features, which enables us to take into account different texture cues
for segmentation.

The remainder of the paper is organized as follows. In Section 2, we present the ellipse-
based texture representation. We then describe in detail the unsupervised texture segmen-
tation with active contours in Section 3. In Section 4, we provide experimental results and
finally conclude the paper in Section 5.

2 Texture representation by a tree of ellipses
In this section, we first recall the basics of the topographic map representation of images and
then describe the ellipse-based texture representation

2.1 Topographic map of an image: a tree of shapes
The topographic map representation of images has been first introduced by Caselles et al. [7]
in computer vision. It is a hierarchical structure composed of shapes and relying on con-
nected components of level sets. It is a powerful way to represent the geometrical content of
an image [6, 9, 24].

For a gray-scale image u : Ω 7→ R, the upper and lower level sets are defined respec-
tively as χλ (u) = {x ∈ Ω; u(x) ≥ λ} and χλ (u) = {x ∈ Ω; u(x) ≤ λ}, for λ ∈ R. The
topographic map of the image u is made of the connected components of the topological
boundaries of the upper level sets (equivalently of lower level sets) of the image. Both the
connected components of upper level sets and those of the lower level sets are embedded in
a tree structure. These two tree structures are redundant and can be combined into a single
one, by drawing on the notion of shape defined as the interior of a level line, i.e. the bound-
ary of a level set. An efficient way to compute the tree of shapes of images is developed
in [19], named fast level set transformation (FLST). (The codes of FLST can be downloaded
at http://megawave.cmla.ens-cachan.fr/.) Figure 2(a) and 2(b) respectively
show the topographic map of a synthetic image and a real image.

The tree of shapes of an image has many interesting properties: (1) it yields a scale space
without any geometrical degradation; (2) it is a complete image representation (the image
can be reconstructed from it) that encodes both the geometric and radiometric information
simultaneously; (3) it is also invariant to any local contrast changes, as defined in [8].

2.2 Texture modeling through the tree of ellipses
Figure 1(b) suggests that topographic maps reflect the structures of texture. This observation
has first been addressed in [7] and has been widely used as a basic assumption by follow-
ings [12, 24] on texture analysis relying on topographic maps.

Here, we suggested that, indeed, textures can be well approximated and represented by
using a tree of ellipses. It implies that each shape on the topographic map is replaced by
an ellipse with the same second-order moments. In Figure 3, we show the ellipse-based
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(a) The tree of shapes representation (right) of a synthetic image (left).

(b) The tree of shapes representation of the texture image in Figure 1. Left: the shapes displayed by
their boundaries; Right: the tree structure, i.e. relationships between shapes.

Figure 2: The tree of shapes representation of images. In order to show the tree structure,
in the left graphs of (b), shapes are indicated by points and the parent-child relationships
between two shapes are expressed by line segments. The root of the tree is the image frame,
denoted by a small circle in red.

texture representation of several natural textures1, observing how textures are approximated
by ellipses. These textures, including textures with elongated structures (the textures in the
middle of Figure 3), appear to be well described by a tree of ellipses.

Thus, the modeling of a texture u is reduced to the modeling of the tree of ellipses (E ,T ),
as

p(u) = p(S,T )≈ p(E ,T ) (1)

where S := {si}N
i=1 is the set of shapes, E := {ei}N

i=1 is the set of ellipses and T : E ×E is the
tree structure describing the relationships between ellipses. In our case, we use following
attributes to describe each ellipse e:

(α,ε,κ,θ) :=
(

log
√

4πλ1λ2,
λ2

λ1
,

4π
√

λ1λ2

µ00
,

1
2

arctan
2µ11

µ20−µ02

)
(2)

1Remark that after replacing each shape in the tree by an approximating ellipse, the inclusion relationships
between shapes may be destroyed. The displayed images are obtained by superimposing ellipses on a blank back-
ground with a large-first order.
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(a) Four natural texture images

(b) The ellipse-based representation of the textures in (a).

Figure 3: Ellipse-based texture representation. Top : original texture images; Bottom :
represented textures using ellipse-based textons, where each shape is replaced by an ellipse
but the tree structure is kept. Refer to the text for more details.

where α , ε , κ and θ are respectively defined as log-size, elongation, compactness and orien-
tation of the ellipses, µpq is the (p+q)-order moment and λ1 and λ2 (with λ1 ≥ λ2) are the
two eigenvalues of the inertia matrix of the corresponding shape s.

Other important texture cues are of course contained in the tree structure. according to
the relationships between ellipses. We take these into account by considering local statistics
on the tree. More precisely, we use the scale ratio γ , the ratio between the area of an ellipse
and the area of its parent on the tree, which is similar to [24].

As the use of gray-level information is beneficial for texture discrimination [14, 20, 22]
and the above features only describe the geometric aspects of textures, here we make use of
the contrast information by considering the normalized gray-level value ρ of pixels in each
ellipse. More precisely, for each pixel in an ellipse, its gray level value is normalized by the
average and standard derivation of all the pixels inside this ellipse.

3 Segmentation by grouping ellipses with active contours

Partitioning an image into different regions of homogeneous texture with active contours has
been widely studied [2, 14, 20]. Here, we make use of it to identify the boundaries between
different texture regions. First, in order to obtain local texture features, we cast the model
in Section 2.2 to each pixel of the image, which implies that a pixel x from the image u is
described by the features of e(x), the smallest ellipse on the tree containing the pixel2. Thus,
a vector ν = (α,ε,κ,θ ,γ,ρ) of length 6 is attached to each pixel x. The segmentation then
amounts to partition the resulting vectorial image. We chose to use an active contour model
based on the Kullback-Leibler (KL) divergence to make a 2-phase partition of the image into
the background and the objects of interest.

2The smallest ellipse of each pixel is assigned when the topographic map is computed by FLST.
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A recent active contour model has been proposed in [14] to find, within an image, two re-
gions with two probability density functions (PDFs) of texture features as disjoint as possible.
We chose to adapt this scheme to our framework because it is adapted to histogram-based
texture characterization and efficient. Suppose for the moment that each pixel of the image
is characterized be a texture feature f . Let pin be the inside PDF, pout the outside PDF,
C := Cin be the evolving region and Ω/C := Cout its complementary set in Ω. The method of
[14] suggests to maximize the KL-divergence between the PDFs of the regions inside and
outside the evolving active contour C. The PDF corresponds to the random variable made of
the texture feature f . The pin and pout associated with a region C are evaluated thanks to a
Parzen window as

pin( f ,C) =
1
|C|

∫
C

Gσ ( f − f (x))dx

and
pout( f ,C) =

1
|Ω/C|

∫
Ω/C

Gσ ( f − f (x))dx,

where | · | is the area of a region and Gσ (·) is a Gaussian kernel with zero-mean and stan-
dard deviation σ , which controls the smoothness of the approximation. The symmetric KL-
divergence between pin and pout is defined as

KL
(

pin( f ,C)‖pout( f ,C)
)

=
∫

∞

−∞

(
pin( f ,C) · pin( f ,C)

pout( f ,C)
+ pout( f ,C) · pout( f ,C)

pin( f ,C)

)
d f . (3)

The segmentation then consists in maximizing the difference between the PDFs inside and
outside a contour C, as

argmin
C

{
L(C)−λKL

(
pin( f ,C)‖pout( f ,C)

)}
, (4)

where L(C) is the length of the contour, and λ is a regularization parameter. After comput-
ing the shape derivative, Bresson et al. [14] showed that the minimization of the energy in
Equation (4) can be solved by a variational model, enabling the fast computation of a global
optimum.

In our case, according to the texture modeling in Section 2.2 and making an assump-
tion that the components of ν = (α,ε,κ,θ ,γ,ρ) are independent, together with the additive
property of KL-divergence on independent variables, we have,

KL
(

pin(ν ,C)‖pout(ν ,C)
)

= ∑
υ∈{α,ε,κ,θ ,γ,ρ}

KL
(

pin(υ ,C)‖pout(υ ,C)
)
,

and
argmin

C

{
L(C)−λ ∑

υ∈{α,ε,κ,θ ,γ,ρ}
KL
(

pin(υ ,C)‖pout(υ ,C)
)}

, (5)

whose minimization is achieved by the variational method proposed in [5].

4 Experimental Results
In this section, several examples of the resulting segmentation scheme are displayed. Fig-
ure 4 shows segmentation results on several composite texture images. Each image is com-
posed of two different textures, which have been radiometrically corrected in order to share
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Figure 4: Segmentations of composite texture images made of two textures, radiometrically
normalized to share the same mean and standard derivation. The segmentation boundaries
(in red) overlay the original images. Left column: original textures; Middle column: the
segmentations obtained by the method of Houhou et al. [14]. Right column: the segmenta-
tions obtained by the proposed method.

the same global mean and standard deviation. To compare with the state-of-the-art results,
we also show the segmentation results obtained on these images using the texture features
based on shape operators proposed by Houhou et al [14], which are reported to outperform
other methods, such as the model of Savig et al. [20] using the vectorial Chan-Vese model
and an edge detector function based on Gabor responses. These features heavily rely on con-
trast information, and therefore may fail in cases where both textures share the same mean
and variance. In comparison, we are able to correctly discriminate between both regions.

We also experiment on several natural images. The best segmentation results obtained
with this method are shown on Figure 5. By "best", we refer to the best choice for the reg-
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ularization parameter λ in Equation (5)). This parameter has been fixed for all experiments.
Moreover, observe that the texton extraction step involves no parameter.

Figure 6 illustrates the segmentation results of two Julesz textures, which are composed
of simple shapes or terminators. The segmentations are satisfying. However, observe that
the obtained segmentations are inconsistent with human texture perception, since these two
textures are not distinguishable by pre-attentive vision [15].

Although this approach may yield excellent results, it is important to notice that those
results highly depend on the regularization parameter λ in the energy, as it is usual with
active contour models and other energy minimization based segmentation models. These
results could certainly benefit from recent developments in global minimization for active
contour models such as those of [5].

5 Conclusion
In this paper, we proposed a new texture segmentation approach by relying on the granulometry-
like texrture analysis method. where ellipses are regarded as texture elements and textures
are characterized by statistics from the ellipse ensembles. We argue that the boundaries
between two natural texture regions can be identified well by grouping these ellipse ensem-
bles according to some statistical properties with an active contour model. In general, this
work somehow fills the gap between granulometry and texton theory on segmentation. It
is convinced by the experimental results that the proposed texture segmentation approach is
efficient for texture segmentation and is also available for textures with geometric transfor-
mations. Notice that this method is very related to the work of Lazebnik et al. [16], who used
ellipse-shaped regions extracted by interest points/regions detectors to form a sparse texture
representation. But they did not consider the geometric properties of the regions and did not
take into account the relationships between them for texture analysis.
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