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Texture classification and segmentation have been extensively researched
over the last thirty years. Early on the Brodatz album[1] quickly became
the de facto standard in which a texture class comprised a set of non-
overlapping sub-images cropped from a single photograph. Later, as the
focus shifted to investigating illumination- and pose-invariant algorithms,
the CUReT database[3] became popular and the texture class became the
set of photographs of a single physical sample captured under a variety
of imaging conditions. While extremely successful algorithms have been
developed to address classification problems based on these databases, the
challenging problem of measuring perceived inter-class texture similarity
has rarely been discussed.

This paper makes use of a new texture collection[4]. It comprises
334 texture samples, including examples of embossed vinyl, woven wall
coverings, carpets, rugs, window blinds, soft fabrics, building materi-
als, product packaging, etc. Additionally, an associated perceptual sim-
ilarity matrix is provided. This was obtained from a grouping experi-
ment using 30 observers. The similarity scores, S(Ii, I j), for each tex-
ture pair were calculated simply by dividing the number of observers
that grouped the pair into the same sub-set by the number of observers
that had the opportunity do so. A dissimilarity matrix was then defined
as dsim(Ii, I j) = 1− S(Ii, I j). Hence dsim(Ii, Ii) = 0 for all images Ii, and
dsim(Ii, I j) = 1 if none of the participants grouped images Ii together with
I j.

(a) A pair of images with: dsim(27,131) = 1. None of the human observers
grouped these textures together

(b) A pair of images which all but one of human observers grouped together:
dsim(168,176) = 0.07.

Figure 1: Some examples of textures from the dataset with their similarity
matrix results

We used this to perform two experiments testing classification and
inter-class similarity performance. In the two experiments, we evaluated
four different texture features (LBP[5], MRV8[6], MRF[7], BIF[2]. We
also tested a multi-scale implementation of the BIF algorithm (MS-BIF).
These feature sets were chosen as they have all demonstrated excellent
results on previous databases and are available to run unchanged as ‘off
the shelf algorithms.’ The aim of Experiment 1 (classification) was to
test the texture classification algorithms on the new dataset, mimicking
the structure of the CUReT database[3] and the protocol commonly used
on it (for example, see [2]). Our results are in agreement with previous
work[2, 5, 6, 7].

In the second experiment we tested the ability of the four texture algo-
rithms to predict the inter-class similarities derived from our 30 observers.
As can be seen inTable 1 the computed distances between histograms do

Feature R2 R2 - log(Feature) ρ

LBP 0.031 0.025 0.131
MRV8 0.042 0.077 0.180
MRF 0.031 0.071 0.206
BIF 0.009 0.063 0.166

MS-BIF 0.011 0.058 0.176
Table 1: Similarity performance. We can see that the best computational
feature explains ≈ 5% of the variation in human responses. ρ is Spear-
man’s correlation coefficient.

not correlate well with human judgementss, with the best performance
giving R2 = 0.04. We also examined Spearman’s rank correlation coef-
ficient, which showed that there was only a weak relationship between
perceptual and computational dissimilarity (ρ = 0.21).

We believe that this set of 334 textures is currently the largest texture
database that has been captured under controlled illumination conditions
and, perhaps more importantly, is accompanied by an associated percep-
tual similarity matrix. It is also contains height data allowing illumination-
independent generation of features and relighting under arbitrary illumi-
nation conditions.

In Experiment 1 we investigated the performance of four state-of-the-
art classification schemes and showed that they provide near-ceiling tex-
ture classification performance when tested on this new texture database
using a protocol similar to that commonly used with the CUReT image
set. However, Experiment 2 showed that the perceptual similarity matrix
obtained using 30 human observers does not correlate well with machine
performance. This is likely to be due to either (a) the perceptual data
not being representative of the population or (b) that the algorithms not
exploiting all of the texture features that are used by human observers.
These include salient, longer range spatial interactions that are not de-
tected by the relatively small spatial neighbourhoods that machine vision
features use.
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