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Abstract

We introduce a simple and efficient procedure for the segmentation of rigidly moving
objects, imaged under an affine camera model. For this purpose we revisit the theory of
“linear combination of views” (LCV), proposed by Ullman and Basri [20], which states
that the set of 2d views of an object undergoing 3d rigid transformations, is embedded
in a low-dimensional linear subspace that is spanned by a small number of basis views.
Our work shows, that one may use this theory for motion segmentation, and cluster the
trajectories of 3d objects using only two 2d basis views. We therefore propose a prac-
tical motion segmentation method, built around LCV, that is very simple to implement
and use, and in addition is very fast, meaning it is well suited for real-time SfM and
tracking applications. We have experimented on real image sequences, where we show
good segmentation results, comparable to the state-of-the-art in literature. If we also
consider computational complexity, our proposed method is one of the best performers
in combined speed and accuracy.

1 Introduction

The motion segmentation problem deals with the partitioning of a sequence of images into
distinct regions, where each region describes a separate motion. We will restrict ourselves
to 3d rigid motions and non-dense object representations, that is, when sparse sets of feature
points are tracked over time, and their trajectories analysed in the images. In addition, under
the assumption that we generally encounter small depth variations in the imaged scene, we
may consequently utilise an affine camera model.

In [17] the authors have shown that under the affine model, the feature point trajecto-
ries of a single rigid motion lie in a low-dimensional linear subspace, and trajectories from
multiple rigid objects will lie in a union of such linear subspaces. Hence, the problem of mo-
tion segmentation is simplified to one of clustering data points drawn from a union of affine
subspaces. The vast majority of motion segmentation methods in literature, make use of
this simplifying assumption, and are in essence subspace fitting and clustering approaches.
We name a few of the most successful methods (relative to the standard dataset [19]) such
as: Sparse Subspace Clustering (SSC) [6], Spectral Curvature Clustering (SCC) [4], and
quite recently Principle Angles Configuration (PAC) [24], and Local Best-Fit Flats (SLBF)
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2 ZOGRAFOS, NORDBERG: MOTION SEGMENTATION USING LCV

Figure 1: The main principle of LCV synthesis is illustrated on the left. On the right, we
show how this idea can be used for generating motion affinities, leading to segmentation.

[25]. Older methods such as LSA [23], ALC [10] MSL [16], GPCA [22] and RANSAC-
type subspace fitting approaches have since been surpassed. Of course, one is not limited to
subspace methods for solving the motion segmentation problem, or indeed an affine camera
model. Of particular interest are for example, the epipolar geometry method by [21], and the
earlier work by [18], and the 6-point invariants approach by [12].

In this work we propose a novel approach, which similarly assumes an affine camera
model, but does not belong in the usual domain of subspace clustering methods. Our ap-
proach is a simple geometric solution, that is based on the observation that one may syn-
thesise the motion trajectories of feature points in an image sequence, by using an algebraic
combination of other feature points that belong to the same object. In order to synthesise the
point trajectories, we use the “linear combination of views” (LCV) theory by [20], which
although pertains to an affine camera model, offers a fast, accurate and practical solution.

In the next section, we will explore the fundamental aspects of LCV theory and its exist-
ing applications and uses. We continue with a detailed description of our method and propose
a very simple synthesise, test and classify algorithm for motion segmentation, which is very
fast, straightforward to implement and has a single parameter that is automatically tuned.
Section 4 summarises our experiments on real image sequences, where we illustrate that our
LCV-based method compares very favourably against other methods in literature, in terms
of accuracy. If we also factor in the overall execution speed, we can see that our approach is
amongst the best. This means that it can actually be used in practice, for real-time structure-
from-motion and tracking applications, unlike most of the other existing popular methods.
We conclude with an overview in Section 5.

2 LCV theory
The LCV theory was originally described by Ullman and Basri in [20], and simply states
that under an affine camera model, the set of views depicting an object, which is undergoing
3d rigid transformations, can in principle be expressed as linear combinations of a small
number of views of that object. This theory allows us to synthesise novel, valid (as far as 3d
rigid transformations are concerned) views of an object, using a small number (usually 2) of
stored views of the object, instead of generating and storing a full 3d model (Fig. 1). This
idea was initially proposed for recognition of wireframe objects, but has since been used
for view synthesis [8, 13] and general object recognition using more complicated features
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[1, 14]. In addition, there is evidence to suggest that similar view-based approaches may be
used by the human visual system for object recognition [2].

We begin with the fundamental principles of LCV theory. Consider a 3d scene with N
points that belong to the same object. For simplicity, we think of bodies that follow the same
3d rigid motion as comprising a single object. Furthermore, we assume an affine camera
projection model, where the 3d points are projected into F images (or frames). The rela-
tion between a 3d point with homogeneous coordinates P j=[X j,Yj,Z j,1]T , j=1,...,N and its
projection to 2d image coordinates pi j=[xi

j,y
i
j]

T , in image i= 1,...,F , is given by pi j=mi P j
where mi is the 2×4 affine camera projection matrix related to image i. The set of N 2d
points on the object, in image i, together define a view of the object:

vi = [pi1 pi2 ...piN ] = mi [P1 P2 ...PN ] = mi S, i = 1, ...,F. (1)

In the following, we refer to the 4×N matrix S as the shape matrix of the object. Alterna-
tively, we may also define the trajectory of a single 3d point j, as the collection of its 2d
projections in all the images:

t j =

 p1 j
...

pF j

=

 m1
...

mF

 P j = M P j, j = 1, ...,N. (2)

We refer to the 2F×4 matrix M as the motion matrix (also known as the joint projection
matrix). If we consolidate all the trajectories or all the views of all the points on the object,
we obtain the combined measurement matrix:

W =


x1

1 x1
2 ... x1

N

y1
1 y1

2 ... y1
N

...
...

. . .
...

xF
1 xF

2 ... xF
N

yF
1 yF

2 ... yF
N

= [t1 ... tN ] =

 v1
...

vF

= M S. (3)

We can see that the 2F×N matrix W factors into the motion matrix M and the shape matrix
S. It follows then that rank(W)≤min (rank(M),rank(S))≤4. This rank constraint on W was
independently observed by both Tomasi and Kanade [17] and by Ullman and Basri [20], but
has been used in different ways.

2.1 The Tomasi-Kanade factorisation
Tomasi and Kanade [17] and later Costeira and Kanade [5] used singular value decomposi-
tion (SVD) to obtain a factorisation, similar to (3), of the 2d measurements into motion and
shape. W can be decomposed into:

W = U[2F×4]Σ[4×4]VT
[n×4] ⇒ M = UΣ

1/2, S = Σ
1/2VT (4)

with Σ being the diagonal matrix of the 4 largest singular values of W. This factorisation is
not unique, and for 3d reconstruction we need additional rotation and translation constraints.
However, for the purpose of motion segmentation this is not necessary. The columns of U
form a set of basis vectors that span the R2F space of W, which is denoted as the Joint Image
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Space (JIS) [15]. In fact, according to [15], each column in W, is a point in the JIS and due
to the rank 4 constraint, the entire trajectory space of the object (i.e. all the columns in W)
lie in a 4d linear subspace of the JIS. Furthermore, each point in the JIS, is linearly spanned
by 4 other points and the coefficients of the linear combination are a function of the 3d shape
alone. In other words, the JIS represents a connection between 2d and 3d, where the camera
parameters have been eliminated.

The Tomasi-Kanade factorisation, provides a convenient basis onto the JIS, and has been
used very effectively for motion segmentation. So for instance, assuming k rigidly moving
objects, their trajectories will lie in a union of k 4d linear subspaces in R2F . Consequently,
the motion segmentation problem simplifies to one of subspace clustering. The majority
of recent motion segmentation approaches are essentially subspace methods that use this
factorisation and cluster trajectories from 4d linear subspaces. Where they differ is on the
way they define their clustering measure (e.g. sparsity, subspace distance, curvature etc).

2.2 Ullman and Basri - LCV
We can instead look at the row-space of W, where each pair of rows represents the shape of
the object in a single view. Each row of W (or “semi-view”), is a point in RN space, denoted
as the Joint Point Space (JPS) [15]. Again, due to the rank 4 constraint, all the semi-views
of the object, occupy a 4d linear subspace in the JPS. Similar to the JIS, each point in the
JPS is linearly spanned by 4 other points, and the coefficients of the linear combination are
a function of the camera parameters alone. The JPS represents a connection between 2d and
camera parameters, where the 3d shape has been eliminated.

We can see this given any 2 basis views, defined by the affine cameras m1,m2. In prin-
ciple, it is possible to reconstruct the 3d shape S by:[

v1
v2

]
=

[
m1
m2

]
S = M12 S ⇒ S = M−1

12

[
v1
v2

]
. (5)

Intuitively, we may think of this expression as the result of triangulating the 3d points in S
given their projection in the two basis views based on the affine camera model. In the current
application we are not interested in an explicit representation of S, and instead use it to show
that we can reconstruct a third view v3 from the two basis views as:

v3 = m3 S = m3 M−1
12

[
v1
v2

]
. (6)

(6) is valid if M12 has full rank, but the general case can be managed if we instead write:

v3 = Q

 1
v1
v2

 , Q =

[
a0 a1 a2 a3 a4
b0 b1 b2 b3 b4

]
. (7)

Consequently, the third view v3 is a linear combination of the two basis views, given by the
elements of the 2×5 matrix Q. The latter depends only on m1,m2,m3 and in a non-linear
way. We can expand (7) to the familiar set of equations presented in [20]:

x3
j = a0 +a1x1

j +a2y1
j +a3x2

j +a4y2
j and y3

j = b0 +b1x1
j +b2y1

j +b3x2
j +b4y2

j , (8)

where (x3
j ,y

3
j) are the coordinates of the novel third view v3, and (x1

j ,y
1
j), (x

2
j ,y

2
j) are the

coordinates of the two basis views v1 and v2 respectively. The expression in (8) is valid for
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ZOGRAFOS, NORDBERG: MOTION SEGMENTATION USING LCV 5

all the points j∈N in the third view. In many practical applications, the matrices m1,m2,m3
are not known and, therefore, neither is Q. From 5 or more corresponding points, visible
in all the three views v1,v2,v3, however, the linear combination coefficients (a,b) can be
estimated by solving the following linear system:

[
x3

1, . . . ,x
3
r

y3
1, . . . ,y

3
r

]
=

[
a0 a1 a2 a3 a4
b0 b1 b2 b3 b4

]
︸ ︷︷ ︸

Q


1, . . . ,1

x1
1, . . . ,x

1
r

y1
1, . . . ,y

1
r

x2
1, . . . ,x

2
r

x2
1, . . . ,x

2
r

 , where r ≥ 5. (9)

Correspondence is typically provided by a feature tracking algorithm (e.g. [9]). The (a,b)
coefficients from (9) will be valid for all the points r in the solution set, and in the absence
of measurement errors, they will also be valid for all the feature points on the same object.

Before we continue, it should be mentioned that although (7) is valid in the general case,
there are degenerate cases when it is not. These are restricted to the case when the rigid
motion between the two basis views are only in-plane rotations or only translations, and the
third view is defined by a general motion m3, e.g., an out-of-plane rotation. However, as
long as the third motion is restricted in the same way as the first two views, (7) is again valid.
Furthermore, in the case that (7) is valid, there are multiple solutions for Q. In fact, the
solution space is an affine space of at least dimension 2. This implies that the least squares
problem described above too has an affine solution space of at least dimension 2.

3 LCV for motion segmentation
Our proposal is based on a very simple principle: given a set of LCV coefficients, we can
generate a synthetic trajectory of a point p j and then compare this synthetic trajectory with
the real trajectory of p j we have tracked. If the similarity between the two is high, then this
indicates that the particular set of LCV coefficients describes well the 3d motion of the point
p j. If it also happens that the LCV coefficients were estimated from a separate set of points
c, then it is very likely that p j and c lie on the same object (see Fig. 1).

Based on this idea, we propose a motion segmentation solution, which has 3 distinct
steps. First is a motion hypothesis sampling step, where we generate a large number C of
possible LCV coefficient matrices Qc

i , c=1,...,C, i=1,...,F . We may consider each individual
set of 2×5×F coefficients as representing a (not necessarily unique) 3d motion hypothesis.
In order to generate each Qc

i , we require a small number of corresponding points across three
views (two basis views and a target view). Here we use 7 points, which keeps the size of
the linear system in (9) manageable, while providing an accurate enough solution. One of
course may use an arbitrary large point set to solve (9), but apart from the obvious practical
problem of ensuring that the points lie on the same object, increasing their number will not
result in any considerable improvement in accuracy (see Fig. 3(b)).

We begin by randomly sampling a large number C of initial points in a single frame. For
each of these points, we take its 6-nearest neighbours (in Euclidean distance) in the same
frame. Here, since the number of initial points C is large, it makes little practical difference
which frame to use, so we always use the first frame in the sequence. Given these C 7-point
clusters, we proceed by solving (9) for each cluster and at each frame, using always the first
and last frames of the sequence as the fixed pair of basis views. In the end, we obtain a set
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Qc
i for every c∈C. Overall this is a very fast procedure, since we are only inverting a 5×7

matrix at each iteration.
The second step, involves generating synthetic trajectories for each scene point p j and

comparing them to the real trajectories. A synthetic trajectory is generated, one point per
frame, using the LCV coefficients Qc

i already calculated from each cluster c. We denote the
synthetic trajectory of p j as t̂ j|c=

[
p̂1 j, ..., p̂F j

]T . A synthetic t̂ j|c and its real counterpart t j
are then compared, forming an entry in the N×C matrix:

E( j,c) = K(
∥∥t j− t̂ j|c

∥∥
H /F), (10)

where ‖.‖H is the robust smooth Huber norm ‖x‖H=
√

1+ x2/τ2−1, with τ being the switch
threshold between the L1 and L2 norms. K() is some kernel function that adjust the weighting
of the error norm. The choice of K usually depends on the problem at hand, on the method
used or is simply an arbitrary choice. Most motion segmentation methods in literature, use
the generic Gaussian kernel. In our case, we have opted for the inverse multiquadric kernel:

K(x,σ) =
(
x2 +σ

2)−1/2
, (11)

which performs equally well to the Gaussian kernel, but has heavier tails for larger residuals
and its parameter σ is easier to tune. Note here that (10) is a geometric error residual in
image space, and we are using this rather than the algebraic residual from the solution of (9)
since the former is more robust, and does not scale unpredictably with the number of points
used to solve (9).

Equation (10) represents a similarity criterion (or affinity) between single points j and
a 7-point cluster c (i.e. 7-tuple affinity). This is because the set of equations in (9) define
a relationship between 5 or more points, but not just for two points. Our end goal here, is
to obtain a relationship between two points at a time (pairwise affinity) that we can use for
clustering. If we observe that the equations in (9) are independent of the ordering of the 7
points used, then according to the work by [7] on multi-way affinities, the full N×N pairwise
affinity matrix can be approximated as A≈EET , up to some scalar multiplication.

We may now use the affinity matrix A in the third step of the algorithm and recover the
final motion clusters using any standard clustering algorithm. We chose spectral clustering
by [11], which is simple and it is known to perform well in practice, even when there is con-
siderable noise in the affinity matrix (i.e. when some of the 7-point clusters do not lie on the
same object or when there is substantial noise in the feature tracking). We have introduced
a small modification to [11] that increases the speed of the algorithm. Instead of performing
the eigen-decomposition on the Laplacian matrix L, we solve the generalised eigen-problem
AV=DVU where U,V contain the k-largest eigenvalues and the corresponding eigenvectors
respectively. D( j, j)=∑

N
j=1 A( j, :) is the diagonal degree matrix of A. Whilst the gener-

alised eigen-problem is slightly more expensive than the standard eigen-problem, it avoids
calculating L explicitly, a step which normally involves expensive matrix multiplications. As
such, the generalised approach is computationally cheaper overall and it solves a “min-cut”
criterion similar to [11]. The full motion segmentation scheme is shown in Algorithm 1.

3.1 On parameter setting
Our motion segmentation method has essentially two important parameters; the number of
7-point samples C and the spectral clustering parameter σ in (11). The other secondary
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Algorithm 1 Motion segmentation
Input: samples C, motions k, measurement matrix W, Output: N×1 label vector (k labels)

Select C random 7-point samples from W //STEP 1
For each 7-point cluster index c ∈C {

Set basis views v1 = p1c and v2 = pFc
For each frame index i ∈ F {

Pre-calculate LCV coefficients Qc
i of v3 from v1 and v2 using (9) }}

For each point index j ∈ N { //STEP 2
Select basis views v1 = p1 j and v2 = pF j
For each 7-point cluster index c ∈C {

For each frame index i ∈ F {
Synthesise target view vi = pi j from v1, v2 and Qc

i using (8)
Set t̂ j|c=[t̂ j|c, p̂i j] }

Calculate the affinity E( j,c) between t̂ j|c and t j using (10) }}

Spectral clustering on A≈ EET with k clusters //STEP 3

parameters are fixed constants, such as the Huber norm τ=15 and the number of moving ob-
jects k, which is always assumed known. In terms of the samples C, we have experimented
with different sizes and present their effects on accuracy and speed in the experiments sec-
tion. A good rule of thumb, is to set C=100·k or alternatively one can ignore C as a tunable
parameter and always set it to the maximum C=N. The most important however, is the σ

parameter that determines the width of the kernel function and as a result, the weighting of
the kernel mapping. Similar parameters and their optimal setting is a well known problem
in spectral clustering research. The choice of σ can play an important role on the final seg-
mentation results, depending of course on the sensitivity of the method and the difficulty of
the problem. Some authors choose to manually tune σ for each problem, but this limits the
practical applicability of the segmentation. Others set σ as some function of the data, while
others automatically search for the optimal σ over a small range of possible values. We
have chosen to follow the third approach, because we have found that it is more reliable in
practice and allows the method to be applied to a greater selection of problems. The scheme
for searching for the optimal σ is similar to the one proposed by [11]. We sample a few
values of σ , say 10 uniform samples between [10−1,10−4] and perform spectral clustering
with each σ sample. The optimal result, will be the one where the distortion between the
clusters is at a minimum. There are many different ways to define cluster distortion or some
generic quality measure. We simply use the k-means error, which is calculated for “free”
during spectral clustering.

4 Experiments
In this section we evaluate the LCV motion segmentation method on real data from the Hop-
kins155 public dataset [19]. The Hopkins155 has been established as the standard evaluation
dataset in motion segmentation research. It contains 155 rigid (general, articulated and de-
generate) motion sequences of 2 and 3 objects, with automatically extracted trajectories that
have been manually refined. Recently, the Hopkins155 has been extended with a few addi-
tional sequences that contain 4 and 5 rigid and nonrigid motions. For all the experiments
that follow, the only parameter assumed known is the number of motions k. The rest are
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8 ZOGRAFOS, NORDBERG: MOTION SEGMENTATION USING LCV

automatically tuned as mentioned previously in Section 3.1.
We have tested our method (LCV) by performing 500 separate runs of the whole dataset

(original 155 motions). The average misclassification errors for 2 and 3 motions are pre-
sented in Table 1. We have also included the best performing methods from segmentation
literature (SCC-MS [3], SSC-N [6], SLBF-MS [25] and PAC [24]) for comparison, as well
as the baseline RANSAC method that fits linear subspaces. The results for the other methods
have been obtained from the recent work by [25] or from their respective publications. We
can see that the LCV method performs very well, close to the state-of-the-art methods and
it is actually better than the SCC-MS. On average, LCV is only around 0.5% worse than
the best performingm method, which in practice amounts to only 1 additional misclassified
point in a typical scene from the Hopkins155 with 250 points. Our method is also amongst
the most stable, with low standard deviation over the 500 runs for 2 and 3 motions. The
misclassification error CDFs are also included in Fig. 2. We see that our method gives some
of the lowest errors for over 90% of the 2 motion sequences. It does contain however a few
high misclassification errors for the remaining 10%, which slightly errode its overal score,
but it is still a very strong performer overall. A similar behaviour can be observed for the
3 motions, with some reasonable and expected degradation. The same cannot be said for
SCC-MS or RANSAC, which becomes almost random.

We also present the result from the extended dataset of 4 sequences with 4 and 5 motions
and nonrigid objects in Table 2. We only show the results of our method, since this is a
relatively new extension and the other methods have not published results yet. Although
there are very few sequences available, we can still observe reasonable performance in par
with the 2 and 3 motions previously. It is also very interesting to see that our method does
not break down for instances of weakly nonrigid motions (3 objects).

Where the LCV method really excels however, is in the segmentation speed. We show
the execution time (in seconds) from a single run on the full Hopkins155 set. The timings for
SSC-N, SCC-MS, SLBF-MS and RANSAC are quoted from [25] and have been obtained on
an Intel Core 2 CPU @ 2.66 GHz. PAC is quoted from [24] and has been obtained on an
AMD Quad Core CPU @ 2.44 GHz. Our method has been evaluated on a slightly slower
Intel Core 2 CPU @ 2.4 GHz. All methods use unoptimised Matlab code. The total and
average times are displayed in Table 3. The fastest overall is RANSAC but with by far the
highest error. The most accurate methods such as PAC, SSC-N and SLBF-MS are also the
slowest, which limits their practical application. PAC for instance requires 41 hours to com-
plete the whole database. Our method and SCC-MS have amongst the best combined speed
and accuracy numbers, meaning that they can be used for motion segmentation in practice.
However, ours is faster and also more accurate than SCC-MS. Together with RANSAC, LCV
is the only other method that requires less than 1 second per sequence, on average.

We have also analysed the size of the 7-point clusters C and its effect on speed an ac-
curacy (see Fig. 3(a)). As expected, a higher C means slower performance (blue curve, left
axis) but also lower errors (green dashed curve, right axis). The indicated position on the
figure, shows approximately where we expect to be if we set C=100·k, where k is the number
of objects. In the same figure in (b), we show the average misclassification error over the
whole dataset, as a function of the number of points we use to solve the linear system in (9).
As we can see, 5 points are not enough to provide a robust solution. Conversely, if we use a
large number of points, it becomes difficult to ensure that all points lie on the same object,
which degrades the segmentation accuracy. Note, that the speed remains largely unchanged.
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Method SCC-MS[4] SSC-N[6] SLBF-MS[25] PAC[24] RANSAC LCV
2 motions (120 sequences)

Mean (500 runs) 1.77 1.00 0.98 0.96 5.56 1.25
std (500 runs) 0.25 0.00 0.00 0.00 n/a 0.07

3 motions (35 sequences)
Mean (500 runs) 5.89 2.62 2.64 2.22 22.94 3.97
std (500 runs) 1.43 0.92 0.00 n/a n/a 0.69

Table 1: Average classification errors (%) and their standard deviation over the 500 runs for
Hopkins155 sequences. PAC is quoted only for a single run.

4 motions (2 seq.) 5 motions (1 seq.) Non-rigid motions (1 seq.)
Mean (500 runs) 7.98 0.00 0.00
std (500 runs) 2.31 0.00 0.03

Table 2: Average classification errors (%) and their standard deviation for extended Hop-
kins155 sequences. Results available only for the LCV method.

Figure 2: The misclassification error CDFs for 2 motions (left) and 3 motions (right) for the
different methods. Note that for the 2 motions, the y-axis starts at 80%.

(a) (b)
Figure 3: Analysis on accuracy and speed for different numbers of clusters C (a) and different
point sizes of each cluster (b).

Method RANSAC SCC-MS[4] SLBF-MS[25] SSC-N[6] PAC[24] LCV
Average time (sec) 0.387 1.264 10.83 165 952.25 0.93
Total time (sec) 60 196 1680 25620 147600 145
Average error (%) 9.48 2.70 1.35 1.36 1.24 1.86

Table 3: The average and total runtime for the different methods on the full Hokpins155
dataset (155 sequences).
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5 Conclusion
We have presented a simple approach for the segmentation of an arbitrary number of 3d
rigid motions from 2d images. Using the theory of linear combination of views, we generate
synthetic trajectories of each point and compare them with the real, tracked ones. We have
experimented on the Hopkins155 dataset and shown very good performance in both speed
and accuracy. Furthermore, our method has a single parameter which is automatically tuned,
making it an ideal method for real-time, practical application. The obvious future extension
of this method, would be to cope with feature points with noisy or missing trajectories and
the existence of outliers, that is trajectories that do not correspond to rigid 3d motions.
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