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Figure 1: The main principle of LCV synthesis is illustrated on the left.
On the right, we show how this idea can be used for generating motion
affinities, leading to segmentation. Here the synthetic trajectory (red) that
uses 7-points from object 1 is similar to the real trajectory (black) of object
1. The opposite holds for the trajectory (blue) synthesised from object 2.

Motion segmentation, is the problem of segmenting an image sequence
into regions, each corresponding to a distinct 3d rigid motion. This task
may be useful in the domains of video surveillance and tracking, robotic
navigation, or as a pre-processing step for high-level scene understanding.
We introduce a simple and efficient procedure for rigid motion segmen-
tation, using the theory of “linear combination of views” (LCV) by [5].
LCV states that, under an affine camera model, the set of views depicting
a 3d rigid object, can be expressed as a linear combination of 2 views of
that object, via the equations:

x3 = a0 +a1x1 +a2y1 +a3x2 +a4y2

y3 = b0 +b1x1 +b2y1 +b3x2 +b4y2 , (1)

where (x3,y3) are the coordinates of the novel third view and (x1,y1),
(x2,y2) are the coordinates of the two existing views. (a,b) are the LCV
coefficients which depend on the camera parameters only and are inde-
pendent of the 3d shape and the feature points chosen. They can be re-
covered by solving:
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for r≥5. This idea is illustrated in Fig 1, where we see that the coordinates
of the third, synthetic view, are linearly interpolated from the two views.

We may use the LCV theory for motion segmentation in the following
simple way: given a known feature trajectory t of a point p over F frames,
we can attempt to synthesise that trajectory t̂, using (1) and a small num-
ber (for example 7) of corresponding points c in two views (tracked cor-
respondences are provided by standard methods such as [3]). If all c and
p lie on the same 3d rigid object, then the synthesis will be accurate and
the difference E between t and t̂ will be small. Conversely, the synthesis
will be invalid and the difference will be large (see Fig. 1). The similarity
measure

E(p,c) =
(
‖t− t̂‖H /F +σ

2
)−1/2

, (3)

which is a kernelised geometric difference in image space, determines the
motion consistency between two trajectories and is used to cluster motion
trajectories together. A simplified algorithm is shown in Algorithm 1.

We have experimented with real data from the Hopkins155 public
dataset [4]. This dataset contains 155 rigid (general, articulated and de-
generate) motion sequences of 2 and 3 objects, with manually refined,
extracted feature trajectories. For all our tests, the only parameter as-
sumed known is the number of motions k. The rest are the number of
7-point clusters, here chosen as C=100·k, and the kernel width σ in (3),

Figure 2: The misclassification error CDFs for 2 motions (left) and 3
motions (right) for the different methods on the Hopkins155

Method RANSAC SCC[1] SLBF[7] SSC[2] PAC[6] LCV
Average time (sec) 0.387 1.264 10.83 165 952.25 0.93
Total time (sec) 60 196 1680 25620 147600 145
Overall error (%) 9.48 2.70 1.35 1.36 1.24 1.86

Table 1: The average and total runtime for the different methods on the
full Hokpins155 dataset (155 sequences), together with their overall mis-
classification errors (2+3 motions). All implementations in Matlab.

which is automatically determined. We have tested our method (LCV) by
performing 500 runs on the whole database, and compared against the top
performing methods in literature.

The misclassification error CDFs for 2 and 3 motions are presented
in Fig. 2. We can see that the LCV approach performs very well, close
to the state-of-the-art methods. However, where LCV really excels, is in
the segmentation speed, due to the fact that the algorithm mostly contains
low-rank matrix inversions eq. (2) and simple summations eq. (1) and (3).
We show the execution time (total and per sequence average), in seconds,
for a single run of the Hopkins155 dataset in Table 1. Our method has
amongst the best combined speed and accuracy values, meaning that it is
well suited for real-time SfM, navigation and tracking applications. Pos-
sible future extensions, as with any motion segmentation approach, would
be to cope with feature points with noisy or missing trajectories and the
existence of outliers, that is trajectories that do not correspond to 3d rigid
motions.

Algorithm 1 Motion segmentation (Simplified)
Select C random 7-point samples in any one frame
For each cluster c ∈C {

Pre-calculate (a,b) using (2) at each frame }
For each scene point p ∈ N {

For each cluster c ∈C {
Synthesise trajectory t̂ of p using (1) at each frame
Calculate similarity E(p,c) using (3)

Spectral clustering on A≈ EET
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