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Abstract

Alignment of objects is a predominant problem in part-based methods for visual ob-
ject categorisation (VOC). These methods should learn the parts and their spatial varia-
tion, which is difficult for objects in arbitrary poses. A straightforward solution is to an-
notate images with a set of “object landmarks”, but due to laborious manual annotation,
semi-supervised methods requiring only a set of images and class labels are preferred.
Recent state-of-the-art VOC methods utilise various approaches to align objects or oth-
erwise compensate their geometric variation, but no explicit solution to the alignment
problem with quantitative results can be found.

The problem has been studied in the recent works related to “image congealing”.
The congealing methods, however, are based on image-based processing, and thus re-
quire moderate initial alignment and are sensitive to intra-class variation and background
clutter. In this work, we define a local feature based algorithm to rigidly align object
class images. Our algorithm is based on the standard VOC tools: local feature detec-
tors and descriptors, correspondence based homography estimation, and random sample
consensus (RANSAC) based spatial validation of local features. We first demonstrate
how an intuitive feature matching approach works for simple classes, but fails for more
complex ones. This is solved by a spatial scoring procedure which is the core element in
the proposed method. Our method is compared to a state-of-the-art congealing method
with realistic and difficult Caltech-101 and randomised Caltech-101 (r-Caltech-101) cat-
egories for which our method achieves clearly superior performance.

1 Introduction
In the baseline approach to visual object categorisation (VOC), Bag-of-Features (BoF), the
classes are learned from automatically detected local features, but their location information
is omitted (e.g., [7]). BoF methods succeed thanks to effective discriminative learning algo-
rithms, but state of the art performances for the most challenging benchmark data sets have
been achieved by utilising both detected local features and their spatial configuration, “con-
stellation”. These methods are referred to as the part-based approach to VOC. With certain
techniques, such as multi-resolution processing [18] or special projections [3], some spatial
information can be incorporated in the BoF framework, but these require non-intuitive ad
hoc processing to gain robustness to standard geometric variations, such as rotation, scaling
and translation. Due to its efficiency, discriminative learning has also been applied for the

c© 2011. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Csurka, Dance, Willamowski, Fan, and Bray} 2004

Citation
Citation
{Lazebnik, Schmid, and Ponce} 2006

Citation
Citation
{Cao, Wang, Li, Zhang, and Zhang} 2010



2 J. LANKINEN AND J.-K. KAMARAINEN: LOCAL FEATURE BASED. . .

part-based approach [17], but it suffers from limited geometric invariance. The most popular
part-based solutions seem to utilise generative model for the spatial constellation of the local
parts. An extra challenge in that case is, that inferring a generative model is difficult if the
training objects are not aligned but in unknown poses.

The first part-based VOC methods required annotated object landmarks to transform
images into a “canonical object space”, where geometric variation was removed [21]. It
is laborious to select and annotate hundreds of images with good landmarks, and therefore
methods requiring less supervision have attracted attention. The most popular approach
are semi-supervised methods which automatically select and learn the local parts and the
constellation model from a set of images containing examples of a same class. That means
that the unsupervised image alignment must occur at some point of the algorithms. Effective
semi-supervised methods exist [1, 2, 4, 14, 16, 29], but none of the works explicitly define
an alignment method nor report quantitative performance of the alignment or its effect to the
overall performance.

Outside the “VOC community”, the unsupervised alignment has been recognised as its
own problem referred to as “spatial image congealing” [19] and a number of congealing
methods have been proposed [5, 6, 11, 13, 19, 32]. These methods are mainly seminal work
to Learned-Miller [19, 26] extending and improving the original algorithm. The main draw-
back of these congealing methods is that they are iterative optimisation methods working on
pixel-level and thus require at least moderate initial alignment in order to converge properly.
The original application areas of the congealing were different, but recently Huang et al. [13]
proposed congealing for the alignment of natural objects.

Our work deviates from the congealing works by the fact that we utilise local features
instead of the pixel level processing, i.e. feature-based congealing. Our solution is more
similar to those used in the part-based VOC methods, but we explicitly define the alignment
algorithm and measure its performance. We report both qualitative (average images with
and w/o the alignment) and quantitative (alignment errors of manually annotated landmarks)
performance for difficult categories in the publicly available Caltech-101 data set and its
randomised version: r-Caltech-101. We make the following important contributions:
• Propose a feature-based alignment algorithm for unsupervised alignment of object

class images.
• Report qualitative and quantitative alignment performance for realistic and difficult

categories in Caltech-101 and its randomised version, r-Caltech-101, and compare our
results to the state-of-the-art congealing method [13].

All source code and data will be made publicly available.

1.1 Related work
Our feature-based algorithm is fundamentally different to the congealing methods [5, 6, 10,
11, 13, 19, 26, 32] which are iterative optimisation methods using pixel-level differences.
Similar ideas have been used in the recent semi-supervised part-based VOC methods [1, 2,
4, 14, 16, 27, 29]. The main weakness in these works is that they do not explicitly define or
study the alignment problem.

Belongie et al. [1] study alignment of shapes and silhouettes and their method is not
directly applicable to natural images of object classes. The same holds for the work of
Berg et al. [2], which extends the previous method by using edge detectors to select putative
candidates and geometric blur as the feature descriptor. Pair-wise non-rigid transformations
are searched by minimising a cost function including a transformation model parameters and
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descriptors. They reported classification performance for a task where a shortlist of manually
segmented exemplars were used and whether the method can be used for the unsupervised
alignment is unclear.

The recent methods by Chen et al. [4] and Jiang et al. [14] need manually marked bound-
ing boxes for the objects and the method by Kokkinos and Yuille [16] annotated features for
the initial training stage. These methods require less supervision than the full manual land-
mark selection and annotation, but do not provide unsupervised alignment. Kokkinos and
Yuille also tried their method with automatically selected landmarks, but with significantly
worse results.

The most similar works to ours are the VOC methods by Philbin et al. [27] and by Todor-
ovic and Ahuja [29]. The method by Todorovic and Ahuja forms a tree structure of nested
local parts and can be used for segmentation, but is not directly applicable for the alignment.
The Philbin et al. method first performs BoF search to find a shortlist of class candidates and
then performs a spatial scoring to select the most likely match based on local feature simi-
larities and the number of corresponding features under homography transformation. Their
method, however, uses local part matching directly, and therefore works best for searching a
specific object.

1.2 Method overview and restrictions

Our assumptions are general and shared by many part-based VOC methods. Most impor-
tantly, we assume that the categories can be represented by class specific local features,
whose saliency triggers local feature detectors and which can be matched using local feature
descriptors. That forms the basis for the feature scoring algorithm in Sec. 2. The category
specific local features, object landmarks, can also be used to spatially align the images by
geometric transformations estimated from their point correspondences. That forms the basis
for the spatial scoring algorithm in Sec. 3. We restrict the transformation type to rigid 2D
transformations. Fig. 1 demonstrates the ideal accuracy of affine transformation to perform
rigid alignment of various Caltech-101 classes.

Figure 1: Caltech-101 images with annotated landmarks. Bottom: all images projected to
the first set (denoted by the yellow tags). The two standard deviations of the image diagonal
normalised projection errors are: 0.0158, 0.0297, 0.0194 and 0.0460, respectively.

We use the existing local feature detection and description methods. Detected local fea-
tures are not applicable as such for the alignment since false matches occur frequently and
therefore scoring best matches leads to bad object landmarks as demonstrated in Sec. 2. The
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feature scoring is based on pair-wise matching matrices which are also used by the pro-
posed method (Sec. 3) to select putative matches which are verified spatially. Our method
utilises a “seed image” where the remaining images are registered for joint-alignment. Our
algorithm scores K best seed features over the whole image ensemble. It is the spatial scor-
ing algorithm which makes our method robust to appearance variation, pose variance and
background clutter. The main bottleneck is the seed selection, which can be automatically
done by introducing some scoring method, or by simply testing a set of random seeds and
manually selecting the one which produces the best average image.

2 Unsupervised alignment using feature scoring

Feature scoring provides an intuitive approach for selecting the best object landmarks from
a seed image. Scores for K best matching seed features are accumulated over an image
ensemble, and features with the highest scores are selected as the object landmarks. The
other images are then aligned to the seed using only the best landmarks. This approach
is similar to stereo and wide baseline matching [28, 30], except that they do not need the
scoring stage or the landmark selection. The scoring, however, improves robustness, which
is needed since we want to select those features which frequently appear in the image set,
and since appearance variation between class examples can be huge. That is not the case in
stereo and wide baseline matching where a scene remains the same.

2.1 Local feature extraction

For the local feature extraction step we adopt one of the most successful detectors, Hessian-
affine [22], and descriptors, SIFT [20]. The combination of these performed well in the
comparisons of interest point detectors [25] and descriptors [23], in the BoF categorisation
experiments [24, 33], and in our preliminary tests as well.

2.2 Feature scoring

The basic idea is to select the seed features which match well to the similarly detected fea-
tures in other images. Overall performance can be computed using, for example, the SIFT
descriptor distances. The simplest solution is to sum the seed feature distances and select the
ones with the K smallest sums. That solution, however, is not robust to missing or occluded
landmarks and a single image may have an undesirably strong effect to the sum. Therefore,
we replace the sum with a ranking-based accumulation: our algorithm accumulates scores
of the K best matches per image. Hypothetically, the best landmarks should finally appear
as the top scoring seed features. The algorithm is given in Algorithm 1.

Examples of the best landmarks are shown in Fig. 2. Some of them are good and locate
in the object areas, but many of them are on rich texture locations in the background or
object edges. In general, the feature scoring method in Alg. 1 can find good object specific
landmarks, such as for face images of a same person, but not good class specific landmarks.
The only useful part are the feature score matrices, SN×Mi , between a seed and other images
i. These are used by the spatial scoring procedure described next.
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Algorithm 1 Landmark selection by feature scoring.
1: Select the seed image and remove it from the image set.
2: Extract seed interest points and form their descriptors (tot. of N).
3: Initialise score vector sN for N candidates.
4: for all images (indexed with i) do
5: Extract interest points and form their descriptors (tot. of Mi).
6: Compute distance from each seed point to each image point: feature score matrix SN×Mi .
7: Increment scores for the K best matching seed features in sN .
8: end for
9: Return coordinates and descriptors of the K best scoring seed interest points.
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Figure 2: Twenty best landmarks found for different categories using Algorithm 1.

3 Unsupervised alignment using spatial scoring

The main problem in the feature scoring is that it does not use spatial information of the de-
tected features. The spatial information can be used by scoring the points which match under
a selected transformation, such as 2D homography. For point correspondences homography
transformation can be computed using the standard linear methods: Umeyama [31] for isom-
etry and similarity, and a restricted version of the direct linear transform (DLT) for affinity
(the standard DLT accounts for projectivity [12]). Over R iterations we randomly select the
minimum number of correspondences (two for isometry and similarity, and three for affin-
ity), estimate homography, transform image points to the seed and accumulate scores of the
features matching within a pre-set distance limit τ . Justification to this random approach
comes from the random sample consensus (RANSAC) robust estimation [9] and is also used
in stereo and wide baseline matching, except that we do not seek for a single solution but
accumulate scores over a number of random iterations and number of images. Our algorithm
is also different from Philbin et al. [27] who use the best matching features over all possi-
ble combinations to verify that at least a fixed number of spatially matching features can be
found, and then again use feature descriptors of the verified features for classification. Our
spatial scoring method for the landmark selection is given in Algorithm 2 and its main com-
putational factor is the number of random iterations R. The other parameters are the match
threshold τ and the number of best matches L ∈ [1,Mi] included from the feature distance
matrices SN×Mi .

The spatial scoring algorithm outputs the best K landmarks based on the top scores. The
top scoring seed features represent landmarks which have been independently verified by
other features in a similar configuration in other images. The spatial scoring landmarks for
various Caltech-101 categories are illustrated in Fig. 3. Now the landmarks for even the most
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Algorithm 2 Landmark selection by spatial scoring.
1: Select the seed image and remove it from the image set.
2: Extract seed interest points and form their descriptors (tot. of N).
3: Initialise score vector sN for N candidates.
4: for all images (indexed with i) do
5: Compute the feature distance matrix SN×Mi . // Similar to Alg. 1
6: Initialise image-wise score vector v← 0.
7: for R random iterations do
8: Select random seed features (minimum number required for the selected homography).
9: Select random correspondences from the L best matches in SN×Mi .

10: Estimate homography from the seed to the image features.
11: Transform all image features to the seed space.
12: for all seed features excluding the selected (indexed with j) do
13: if the seed feature has a match closer than τ within the L best in SN×Mi then
14: Increment the score for that seed feature: v( j)← v( j)+1.
15: end if
16: end for
17: end for
18: Sort the scores in v and increment the K highest seed scores in sN . // Note, that each image has

now equal contribution.
19: end for
20: Return coordinates and descriptors of the K best scoring seed interest points.

complex categories are within the object area and thus represent the object class much better
than in Fig. 2.
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Figure 3: Twenty best landmarks found for different categories using Algorithm 2.

3.1 Alignment using the selected seed landmarks
With the automatically selected object landmarks the alignment procedure itself is straight-
forward. For a number of random iterations, the minimum number of seed landmarks are
selected, then homography is estimated to randomly selected correspondence points within
the best matches, and finally, the homography which produces the highest number of inliers
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is selected and the transformation re-estimated using all inliers. This stage is very similar
to stereo and baseline matching, except that again not only the best but a few best matches
should be used for robustness.

4 Performance evaluation
The VOC methods reviewed in Sec. 1.1 ([1, 2, 4, 14, 16, 27, 29]) did not report alignment
results but only the VOC classification performance. The congealing methods reviewed in
the same section used simple classes, such as binary images of digits, and did not provide
quantitative results but only the average images before and after congealing. The average
images are good for visualisation, but not for a reliable method comparison. Cox et al. [5]
exemplified their method with handwritten digits in the MNIST data set and face images in
the MultiPIE data set. As an exception, they also reported quantitative results as the cumu-
lative distribution of the RMS point error to manually annotated landmarks of the MNIST
faces. We report both the average images and the cumulative RMS error curves.

In our experiments, we used by an order of magnitude more difficult images as compared
to the congealing works: object class examples in Caltech-101 [8], which is the most pop-
ular VOC benchmark. Caltech-101 contains object classes with natural visual appearance
variation and with varying background. The main problem of Caltech-101 is that the objects
are mainly in the image centre and pose variation is very limited. Moreover, some classes
have virtually no background or the background remains the same. These problems make the
data set bad for comparing alignment methods and for this reason, we also report the results
for the recently published randomised Caltech-101 (r-Caltech-101) [15]. In r-Caltech-101
the backgrounds have been replaced with random Google landscape images and the objects
transformed to random poses (scale, translation, rotation). To compute the cumulative RMS
curves, we annotated all test images with 5-12 landmarks. The selected parameters for our
method in Alg. 2 were: R=1000 random iterations, τ = 0.05 and K = L = 10.

The RMS performance represents the proportion of the images (y-axis) for which a spe-
cific accuracy (normalised distance: x-axis) is achieved. The distance normalisation was per-
formed by dividing pixel errors with the seed image diagonal which makes the error measure
resolution independent. The “ideal result” was computed using the groundtruth landmarks
for the alignment. The results are reported for the following four categories: Faces, Motor-
bikes, cars_side, and stop_signs, which represent small (stop signs), moderate (Faces) and
large (motorbikes and car side views) visual appearance variation.

In Fig. 4 are shown the average images for the selected classes in r-Caltech-101 without
alignment, using a state-of-the-art method by Huang et al. [13] and for our method with the
best seed. Clearly, our method provides a recognisable average classes while the state-of-
the-art congealing suffers from the fact that the initial alignment is poor and backgrounds
cluttered. The error graphs are shown in Fig. 5 for the corresponding images in Fig. 4. In
addition, we have added the results with the same images in the original Caltech-101 in
order to verify that similar results were achieved with the original data. It is noteworthy, that
the cumulative error of 0.2 is very large and the most important region is between 0.0 and
0.1. For example, the two standard deviations in Fig. 1 (covering 95% of all errors) were
all below 0.05, which was used as the matching threshold τ . The differences of our method
between Caltech-101 and r-Caltech-101 result graphs can be explained by the fact that the
best seed can be different for Caltech-101. Our method, however, succeeds with Caltech-101
and r-Caltech-101 almost equally on average.
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Figure 4: Qualitative alignment results for r-Caltech-101: unaligned average (top), Huang et
al. [13] (middle), and our method (bottom).

5 Discussion and conclusions

This paper investigated unsupervised object class image alignment, which is a predominant
sub-problem in part-based methods for semi-supervised visual object categorisation. Similar
methods to ours have been used in the recent VOC methods, but to the authors’ best knowl-
edge this work is the first to explicitly investigating the problem, providing an algorithm, and
reporting qualitative and quantitative alignment performance.

The alignment problem has been studied in the context of “image congealing”, but the
congealing methods are not robust to drastic misalignment and background clutter. In the
experimental part of our work, our method achieved superior results to a state-of-the-art
congealing method.

The main limitation of our method is the seed selection. Automatic seed selection will be
addressed in our future work, but as a straightforward solution in this work, we computed the
average alignment images for every seed and manually selected the visually most plausible.
This simple solution does not violate the semi-supervised principle where input images need
to be processed anyway for providing class labels. However, in our case no annotation for
landmarks, boundary boxes, or regions is needed.

Future work shall further try to combine our method with the state-of-the-art part-based
VOC methods, using our method at the core of their algorithms for image alignment and part
selection. Note, that as its side result, our method automatically provides also a set of the
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Figure 5: Quantitative results. Cumulative error curves for faces (top left), motorbikes (top
right), stop signs (bottom left) and car side (bottom right). Blue: ideal, cyan: Huang et
al. [13], red: our method for r-Caltech-101, and green: our method for original Caltech-101.

most repeatable local parts.
In addition, it would be intriguing to combine our method with the state-of-the-art con-

gealing methods, such as [5, 13] since a hybrid approach could be useful, for example, in
robust and accurate alignment of images in huge existing medical image databases.
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