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Particle filtering is a Sequential Monte Carlo (SMC) technique to estimate

the dynamic state given observations in a Bayesian framework. Although

particle filter is useful to propagate a general posterior density function

over time, but has critical limitations. A lot of observations are required

to estimate the target state accurately, especially when a high dimensional

state space is involved. Also, particle filter typically suffers from loss of

diversity or degeneracy; only a small number of particles have non-trivial

weights and the weights of other samples are close to zero. Therefore, it

is important to maintain the diversity of particles as well as propagate the

modes of the posterior for tracking perfomance improvement.

In this context, we propose a dynamic resource allocation algorithm

based on Ranking Support Vector Machine (R-SVM) [1] for particle filter

tracking. We adjust the number of observations in each frame adaptively

and automatically, where tracker performs measurement for a subset of

highly ranked particles in likelihood to preserve mode locations in the

posterior and allocates the rest of particles to maintain the diversity of the

posterior without actual measurements.

We claim that the posterior density function can be approximated ef-

fectively with a small number of highly ranked particles, where the rank

of each particle is determined by a ranking classifier trained off-line. We

represent the posterior density function with a mixture model based on ob-

served particles and unobserved uniformly weighted ones, which is given

by
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where u(xt) is the uniform distribution over xt , and ∑
No

t

i ω i
t = 1. Note that

πo
t and πu

t are the normalized mixture weights for observed and unob-

served density, which are given by

πo
t = max{α,No

t /N} and πu
t = 1−πo

t ,

where N = No
t +Nu

t and α is a constant. The mixture representation of

the posterior in Eq. (1) enhances the diversity of particles by the uniform

term, so our algorithm may suffer less from degeneracy problem or can

recover from failures. Also, our framework speeds up particle filtering by

observing only particles with high observation likelihoods; this advantage

is more significant when the measurement cost per each particle is high

as in l1 minimization tracking based on sparse representation [2].

The posterior density function of Eq. (1) is estimated by the following

procedure. We draw N particles in each time step, and divide them into s

subsets as

S j = {(xi
t ,ω

i
t )}i=1: N

s
, and j = 1, . . . ,s.

The observation is performed in multiple stages—one subset in each stage,

where we continue the observations to estimate the posterior until q highly

ranked (top p%) particles are obtained. We employ l1 minimization tech-

nique to obtain the observations via sparse representation, and the quality

of each particle is predicted by R-SVM based on likelihoods.

The R-SVM trained off-line can be used to evaluate the particles from

any targets and sequences universally since training is performed with the

particle likelihoods, not with appearances such as image features. The
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Figure 1: Tracking results of the campus sequence. The groundtruth is

given by green rectangles. Ours are with red rectangles, and l1 minimiza-

tion tracking with different number of particles—30, 60, 100, 200, 400,

and 600 are represented by blue rectangles with different intensities.
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Figure 2: Normalized intersection ratios over time for ours (L1TRSVM)

and l1 minimization tracking with different numbers of particles in the

campus sequence.

feature vectors for the classification are constructed based on the like-

lihoods obtained from the regions associated with particles. Instead of

observing the entire region defined by a particle, we divide the region into

partially overlapping 3×3 small blocks and perform the measurement for

each block. Let {bm}m=1:9 be the blocks and l(bm) be the likelihood of

the m-th block. The 9-dimensional feature vector dk is constructed for

training the R-SVM classifier as

dk = [l(b1), l(b2), . . . , l(b9)]
⊤, bm ∈ R

db ,

where db is the number of pixels in a block. The quality (rank) of a particle

is measured by the bounding box overlapping ratio between groundtruth

and candidate regions; the rank of each particle is defined by

rk = τ(βo(xk)),

where τ(·) is a monotonic step function, o(xk) is the overlapping ratio

between the groundtruth and the k-th particle, and β is a constant. We

collect a number of feature vectors dk and the corresponding ranks rk

from real tracking results, and train R-SVM.

We validated our particle ranking technique, which is integrated into

l1 minimization tracking, with several challenging videos, e.g., Figure 1.

More experiments and comparisons with other tracking algorithms in dif-

ferent sequences are illustrated in our paper. To summary, our algorithm

showed superior or comparable results with only a small subset of obser-

vations as presented in Figure 2; it is useful to reduce observation cost

and improve sample quality in particle filtering.
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