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Abstract

Human interaction dynamics are known to play an important role in the develop-
ment of robust pedestrian trackers that are applicable to a variety of applications in video
surveillance. Traditional approaches to pedestrian tracking assume that each pedestrian
walks independently and the tracker predicts the location based on an underlying mo-
tion model, such as a constant velocity or autoregressive model. Recent approaches have
begun to leverage interaction, especially by modeling the repulsion force, among pedes-
trians to improve motion predictions. However, human interaction is more complex and
is influenced by both repulsion and attraction effects. This motivates the use of a more
complex human interaction model for pedestrian tracking. In this paper, we propose a
novel visual tracking method by leveraging complex social interactions. We present an
algorithm that decomposes social interactions into multiple potential interaction modes.
We integrate these multiple social interaction modes into an interactive Markov Chain
Monte Carlo tracker. We demonstrate how the developed method translates into a more
informed motion prediction, resulting in a robust tracking performance. We test our
method on videos from unconstrained outdoor environments and compare it against pop-
ular multi-object trackers.

1 Introduction
Multiple pedestrian tracking in unconstrained environments remains a challenging task that
has received considerable attention from the computer vision community in recent years.
Accurate and real-time multiple pedestrian tracking can greatly improve the performance
of activity recognition and analysis of high level events through a surveillance system. A
number of approaches, that address this issue, have been proposed in the past few years
[2, 13]. However, even the best of the existing systems tend to exhibit a loss of accuracy and
tracking precision in unconstrained environments and fail to account for complex pedestrian
interactions in a scene.

Recently, tracking approaches have explored the social interaction among pedestrians,
which provides additional constraints and guides motion prediction. The linear trajectory
avoidance model [15] used the repulsion effect among pedestrians to predict local motion
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paths for individual pedestrians. Luber et al. [12] extended the use of repulsion effect to in-
clude scene obstacles to improve motion prediction. Choi et al. [5] considered both repulsion
effects and group motion dynamics within a joint prediction model. Broadly speaking, all
models based on the use of repulsion effects [5, 12, 15] are applicable only in environments
where pedestrians are moving in a crowd and do not deviate from their global destination. In
contrast, the modeling of more complex interactions among people exhibited through both
repulsion and attraction effects has not been adequately explored. Incorporation of the at-
traction effect into a social interaction model is a logical extension to improve the accuracy
of representing pedestrian dynamics. In this paper, we present a visual tracker with a pedes-
trian dynamic model that combines both attraction and repulsion effects among pedestrians.
Without explicit knowledge of the exact social interaction at any instance in time, we con-
sider the motion of each pedestrian to be a combination of all potential social interaction
modes. Motivated by the work of Kwon and Lee [11], we propose to decompose a complex
human interaction into several deterministic social interaction modes. Specifically, we build
a social force model [9] to describe the attraction and repulsion effects among pedestrians.
The key contributions of our work are as follows:

1. A repulsion and attraction model describing pedestrian dynamics. We model both
repulsion and attraction effects in pedestrian dynamics. Such interactions are more
common in unconstrained environments and can be leveraged to capture various inter-
action behaviors such as people meeting, people following, and/or group interactions.

2. A decomposed social interaction model. We propose a decomposed motion model that
approximates complex social interactions and enables motion prediction without the
knowledge of instantaneous interaction modes. The model predicts and tracks multi-
ple pedestrians based on multiple social interaction modes and combines the tracking
results together.

The rest of this paper is organized as follows. Section 2 presents the proposed social in-
teraction model and describes its decomposition into multiple models. The incorporation of
the proposed model within a Bayesian tracking framework and the design of the compound
tracker is presented in Section 3. Section 4 presents the experiments performed and a quali-
tative and quantitative assessment of the tracker performance. Comparative analysis against
multiple existing trackers is also presented. Finally, conclusions are presented in Section 5.

2 Social Interaction Model
The social force model by Helbing [9] is a computational model in which the interactions
among pedestrians are described by using the concept of forces between physical entities.
Each pedestrian feels a social force from other pedestrians that is proportional to the distance
between them. In this model, a pedestrian i makes motion decisions based on the sum of
forces ~Fi exerted.

The social force can be divided into repulsive, ~f r, and attractive, ~f a, forces. The repulsive
force captures the behavior where people try to avoid collisions with each other and the
attractive force captures the behavior when a person approaches another person with an intent
to meet. A sum of these forces can be represented by:

~Fi = ∑
j 6=i

~f r
i j + ∑

k 6=i,k 6= j

~f a
ik, (1)
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where ~f r
i j indicates the repulsive force between pedestrians i and j and ~f a

ik indicates the
attractive force between pedestrians i and k. In the social force model, it is assumed that
every pedestrian knows the location of every other pedestrian in the scene.

The attraction and repulsion forces share a similar model with different directions and
monotonicity. This can be expressed as:

~f r
i j = Fr ∗ e(

ri j−di j
b )~u ji,and (2)

~f a
ik = Fa ∗ e(

dik−rik
b )~uik, (3)

where Fr and Fa are the magnitudes of repulsion and attraction force, respectively, b is the
boundary of the influence of the force, di j is the Euclidean distance between i and j, dik is
the Euclidean distance between i and k, ~u ji is the unit vector from j to i, and ~uik is the unit
vector from i to k. The private sphere of a pedestrian is represented by a circle of radius r
with ri, r j, and rk defining the private sphere of pedestrians i, j, and k, respectively. Further,
ri j = ri + r j and rik = ri + rk define the radius of influence for pedestrians i and j, and i and
k, respectively.

Under the social force model, the motion model that predicts the positional information
for a tracked pedestrian i is given by:

~Fi

mi
=

∂~vi

∂ t
, (4)

where~vi is the instantaneous velocity and mi is the mass.

2.1 Social Interaction Decomposition
It is hard to define the social interaction mode for every pedestrian pair without an explicit
knowledge of their intent. To address this point, we treat pedestrian interaction as linear
combination of potential social interaction modes with dynamically adjusted weights at dif-
ferent moments in time. We decompose social interaction into potential social interaction
modes and quantify them using a social force model [9] as shown in Eq. 5. For pedestrian i,
the total force is given by:

~Fi =
qi

∑
n=1

wdn
i
~Fdn

i , d1,d2, . . . ,dqi ∈ Di, (5)

where dn denotes the nth social interaction mode, ~Fdn
i represents social forces based on mode

dn, wdn
i is a weighting coefficient, Di is the set of potential social interaction modes, and qi

is the number of social interaction modes. For any pedestrian, the decomposition is defined
by first building social links with other pedestrians. The attraction and repulsion effects of
the link are denoted by {+} and {−}, respectively, and a social interaction mode is denoted
by a set of social links’ effects. For example, the set with two links would constitute the
following interaction modes: {{+,+},{+,−},{−,+},{−,−}}, and the set with one link
would include {{+},{−}}. Each pedestrian’s social interaction set is expanded to have the
same size as the maximum number in the social interaction set represented by qi = q. This
is done to ensure that the number of decomposed motion models remain the same across all
tracked pedestrians.
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Consider the scene illustrated in Fig. 1 comprising of six pedestrians. For pedestrian P1,
the decomposition would be realized by building two social interaction links {l12, l13} based
on the boundary of the social force’s influence. In this case, the set of social interaction
modes would be represented as D1 = {{+,+},{+,−},{−,+},{−,−}} and the social in-
teraction mode of pedestrian P1 at that moment would be one mode from the set. The social
interaction force model is leveraged to compute the repulsion and attraction forces, which
are ~f r

21, ~f r
31, ~f a

12, and ~f a
13. As an example, the interaction force for mode d1 = {+,+} would

be given by ~Fd1
1 = ~f a

12 +
~f a

13. In this example, considering pedestrians P1−P4, the maximum
size of the set of social interaction modes is four due to D1. Although pedestrian P4 has only
one link {l43}, the set D4 is expanded to the same size. That is, D4 = {{+},{−},{+},{−}}
and accordingly ~Fd1

4 = ~f a
43. Pedestrian P5 has no social interaction link indicating that the

social force under any interaction mode is zero. The set of interaction modes is expanded
for D5 to include D5 = { /0, /0, /0, /0} and accordingly ~Fd1

5 =~0. Similarly, the forces for each
of the pedestrians are computed and finally the force vector resulting from a single social in-
teraction mode is given as ~Fdn = [~Fdn

1 ,~Fdn
2 , . . . ,~Fdn

P ]T where P is the number of pedestrians.

Figure 1: Depiction of the social interaction decomposition framework

The proposed decomposition is computationally unsustainable. Within the context of a
Bayesian tracking framework, the posterior distribution for each interaction mode dn, given
a motion prior, can be approximated by constructing a Markov chain for sampling. Hence,
an increase in the number of social links leads to an increase in the number of social inter-
action modes within a set and a corresponding increase in the number of sampling chains.
Considering P pedestrians in a scene, if every pedestrian has a social interaction link with

each other, then, the number of chains is given by Q = 2L = 2
P(P−1)

2 , where L is the number
of links. There is an exponential growth in the number of chains with respect to the number
of pedestrians to be tracked. We address this issue by limiting the number of social links
between pedestrians based on the distance between them. The construction of social links
is based on the ε-graph [4]. A link is established between pedestrian i and j if E(i, j) < ε

where E is the Euclidean distance in real world coordinates. By adjusting the value of ε , we
build sparse links among pedestrians. In this paper, ε is set to be equal to the value of the

Citation
Citation
{Chen, Ugarte, Wu, and Aghajan} 2011



XU YAN, ET AL: PREDICTING SOCIAL INTERACTIONS FOR VISUAL TRACKING 5

forces’ boundary b.

2.2 Motion Model with Social Interaction Modes
In a Bayesian context, the tracking problem is to quantify the posterior density p(xt |y1:t),
where the observations are specified by y1:t = y1,y2, ...,yt . Given the state xt at time t, the
posterior probability is estimated by:

p(xt |y1:t) = cp(yt |xt)
∫

p(xt |xt−1)p(xt−1|y1:t−1)dxt−1, (6)

where c is a normalization constant, p(yt |xt) specifies the likelihood function of the current
observation given the current state, p(xt |xt−1) specifies the probability of the current state
given the previous state and the prior probability, and p(xt−1|y1:t−1) specifies the previous
posterior probability.

The goal of our proposed method is to find the best state x̂t at time t given the observation
y1:t . It can be obtained by using the Maximum a Posteriori (MAP) estimate over the M
samples at each time t, denoted by:

x̂t = argmax
x`t

p(x`t |y1:t) for l = 1, . . . ,M , (7)

where x`t indicates the `th sample of the state xt . Our method estimates an accurate value of
posterior probability by designing a sophisticated motion model p(xt |xt−1). Following the
decomposition idea by Kwon and Lee [11], the motion model is designed as the weighted
linear combination of its basic components:

p(xt |xt−1) =
N

∑
n=1

wn
t pn(xt |xt−1), and

N

∑
n=1

wn
t = 1, (8)

where pn(xt |xt−1) denotes the nth basic motion model, wn
t is the weighting variable at time

t, and N is the number of decomposed motion models, which is equal to cardinality of the
social interaction set. Hence, N = q.

Let~ct = [~c1,t ,~c2,t , . . . ,~cP,t ]
T and~vt = [~v1,t ,~v2,t , . . . ,~vP,t ]

T denote the positions and veloci-
ties of the pedestrians, respectively, at time t. Given ~Fdn = [~Fdn

1 ,~Fdn
2 , . . . ,~Fdn

P ]T , the position
information for pedestrians in the next frame can be predicted. Using a constant velocity
motion model, the motion prediction is defined as~ct =~ct−1 +~vt−1∆t in which ∆t is the time
interval between two frames. Incorporating the social interaction force for prediction, the
state update at a fixed interval of time ∆t is given as:[

~cdn
t

~vdn
t

]
=

[
~ct−1 +~vt−1∆t + 1

2
~Fdn

m ∆t2

~vt−1 +
~Fdn

m ∆t

]
, (9)

where~cdn
t and~vdn

t denote the predicted positions and velocity of pedestrians under the inter-
action mode dn, respectively. For a single pedestrian i, the motion prediction~ci,t is given by
a set of locations predicted by each of its social interaction modes, ~ci,t = {~cd1

i,t ,~c
d2
i,t , . . . ,~c

dq
i,t }.

In this work, each basic motion model pn(xt |xt−1) is modeled as a Gaussian distribution and
is given by:

pn(xt |xt−1) ∝ N (~ct ;~c
dn
t ,σ2). (10)
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2.3 Observation Model

Following Perez et al. [16], we use a color observation model based on the Hue-Saturation-
Value (HSV) space. Given the initialization for any pedestrian to be tracked (bounding box),
we perform a kernel density estimate, g∗ = g(x0), of the color distribution in frame 0. The
data likelihood is derived based on the Bhattacharyya similarity coefficient and is defined as
S[g∗,g(xt)]. The likelihood of observation, based on Gibbs distribution, is given by:

p(yt |xt) ∝ exp(−λS2[g∗,g(xt)]), (11)

where λ = 20 as suggested in [16].

2.4 Compound Tracker: Integrating Decomposed Motion Models

Given each decomposed motion model, a basic tracker is composed of a pair of observation
and motion models as illustrated in Fig. 2. This generates a basic tracker n that uses the
observation model p(yt |xt) and the motion model pn(xt |xt−1), describing a specific social
interaction mode dn. The total number of basic trackers for a pedestrian i is the same as the
total number of social interaction modes in the set Di. A Markov chain is constructed for
each of the trackers. The state space is updated according to the MAP estimate obtained
via the Metropolis Hasting algorithm [8]. The Interactive Markov Chain Monte Carlo (IM-
CMC) algorithm is leveraged to sample across the basic trackers and combine their sampling
results. The IMCMC algorithm consists of two main parts: parallel process and interacting
process. The Metropolis Hasting algorithm is executed in parallel across all chains during
the parallel process while the optimal state value is determined during the interacting process
through communication between all chains. The weight wn

t is implicitly estimated during the
interacting process. The implementation used in this paper follows the approaches proposed
in Kwon and Lee [11] and Corander et al. [6].

Figure 2: Overview of the proposed tracking framework
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Figure 3: The tracking results for selected frames from the BEHAVE dataset: our proposed
tracker (row1), BPF (row2), MCMC (row3), and VTD (row4).

3 Experiments

The proposed tracker is evaluated across multiple datasets and compared against several pop-
ular visual trackers. Specifically, we compare the tracking results of our method with those
of boosted particle filter (BPF) tracker [14], a standard MCMC particle filter tracker [10, 16],
and the Visual Tracking Decomposition (VTD) tracker [11]. Since the standard MCMC par-
ticle filter only has a single Markov Chain, we perform N iterations of the MCMC tracker
where N is the maximum number of Markov Chains used in our method. All the trackers are
initialized manually by specifying a bounding box in the first frame and data association is
entirely based on the generative observation model without any dynamic update. To initial-
ize the social interaction model, we assume that a pedestrian has a private sphere of radius
equal to 0.1 m and a mass of 80 kg. The magnitude of social force is 500 N and the boundary
is set to be 3 m. The relaxation time used for all video sequences is 0.2 s. The tracking cycle
is equal to the discrete time interval ∆t according to every video sequence’s frame rate. The
variance of motion model, σ2, is set to 2.

3.1 Datasets

Two video sequences were included from the “BEHAVE” Interactions Test Case Scenarios
[1]. The videos were acquired at 25 frames/sec and the tracking cycle used is 0.04 s. Two
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Figure 4: The tracking results for selected frames from our dataset: our proposed tracker
(row1), BPF (row2), MCMC (row3), and VTD (row4).

campus pedestrian sequences from the “EPFL” dataset [7] were also included in our anal-
ysis. These videos were acquired at 25 frames/sec and the tracking cycle used is 0.04 s.
Finally, we also included two video sequences acquired by our team in an outdoor passage-
way with six pedestrians in the scene. The videos were acquired at 30 frames/sec and the
tracking cycle is 0.034 s. The resolution of each frame in the video is 704×480 pixels.

3.2 Qualitative Comparison

Across all six video sequences, exhibiting varying environments, our method successfully
tracked all pedestrians. An illustrative example from one of the “BEHAVE” sequences is
shown in Fig. 3. This scene shows two pedestrians approaching a third and eventually form-
ing a group. Four representative frames from each algorithm’s tracking results are shown.
The proposed tracker and BPF track all pedestrians well before the three pedestrians start
exhibiting group interaction. However, only our tracker continues tracking successfully
through the group interaction even though there is significant occlusion. The other two
trackers fail due to misleading background and poor image quality. Similar observations can
be made for the results from the video sequences from the “EPFL” dataset. Once again the
MCMC and the VTD tracker failed early due to complex background and occlusions. BPF
tracked well before the occurrence of partial occlusions. In contrast, our tracker tracks the
occluded pedestrians even through abrupt motion changes due to robust prediction based on
accountable social interaction modes. Figure 4 shows four representative frames of each
algorithm’s tracking results from a video sequence acquired by our team in an outdoor pas-
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sageway. Due to poor image quality, similar appearance among pedestrians, and partial oc-
clusions, MCMC and VTD trackers lose track of several pedestrians. The proposed tracker
and the BPF tracker successfully localize all pedestrians correctly through the video. How-
ever, overall, the proposed algorithm exhibits better tracking performance compared to the
BPF tracker.

3.3 Quantitative Comparison
To quantitatively compare the result under different scenarios, we manually labeled the
ground truth in the six video sequences. The tracking performance is measured based on
CLEAR MOT metrics [3]. We report multiple object tracking precision (MOTP), miss rate,
false positive rate and number of ID switches. The threshold of building a matched pair be-
tween a tracking result and the ground truth is half of the rectangles’ diagonal in the ground
truth. MOTP measures the ability of the tracker to estimate precise pedestrian positions,
which is independent of an algorithm’s tracking accuracy. In this paper, MOTP is computed
as the average error of matched pairs’ center over all frames, measured in pixels.

Tables 1-3 present the results of all four algorithms for each of the video sequences from
the “BEHAVE", “EPFL", and our datasets, respectively. Our tracker outperforms all the
other trackers in terms of miss rate, false positives rate and ID switches. In terms of MOTP,
our tracker outperforms the other trackers in four video sequences and achieves the second
best in two other video sequences. Overall, the proposed algorithm tracks multiple pedes-
trians more robustly by leveraging individual social interaction modes. The results clearly
indicate that the improved motion model also contributes to better localization accuracy.

Seq#1 Seq#2
False ID False ID

Method MOTP Misses Positives Switches MOTP Misses Positives Switches
OURS 3.62 0.00 % 0.00 % 0 3.21 0.00 % 0.00 % 0
BPF 6.48 54.49 % 54.49 % 0 3.14 18.21 % 18.21 % 0
MCMC 3.86 29.28 % 29.28 % 0 4.99 26.65 % 26.65 % 43
VTD 5.46 44.64 % 44.64 % 12 2.60 47.93 % 47.93 % 17

Table 1: BEHAVE dataset results.

Seq#1 Seq#2
False ID False ID

Method MOTP Misses Positives Switches MOTP Misses Positives Switches
OURS 2.71 0.00 % 0.00 % 0 1.22 0.00 % 0.00 % 0
BPF 4.64 8.92 % 8.92 % 0 3.58 9.57 % 9.57 % 0
MCMC 3.97 27.48 % 27.48 % 0 14.53 50.43 % 50.43 % 5
VTD 4.93 37.12 % 37.12 % 17 3.37 38.55 % 38.55 % 2

Table 2: EPFL dataset results.

4 Conclusion
In this paper, we have proposed a new dynamic model for tracking multiple pedestrians. The
method leverages the social interaction decomposition to approximate a broader set of human
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Seq#1 Seq#2
False ID False ID

Method MOTP Misses Positives Switches MOTP Misses Positives Switches
OURS 4.67 0.32 % 0.32 % 0 4.43 0.00 % 0.00 % 0
BPF 5.89 1.64 % 1.64 % 1 6.20 0.00 % 0.00 % 0
MCMC 12.85 26.39 % 26.39 % 122 3.95 22.25 % 22.25 % 0
VTD 8.57 43.01 % 43.01 % 17 10.18 30.47 % 30.47 % 353

Table 3: Our dataset results.

interaction behaviors in unconstrained environments. To the best of our knowledge, this is
the first time the social force model has been extended to include the notion of attraction in
human tracking. The proposed dynamic model is decomposed through the construction of
multiple basic trackers, each representative of a motion model defined by the specific social
interaction mode. An IMCMC framework is used to combine the predictions from the basic
trackers to find the best state at each time step. The experimental results demonstrate that
the proposed method enables tracking of pedestrians in complex scenes with occlusions and
varying interaction behaviors.
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