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Abstract

Spatio-temporal salient features can localize the local motion events and are used to
represent video sequences for many computer vision tasks such as action recognition.
The robust detection of these features under geometric variations such as affine transfor-
mation and view/scale changes is however an open problem. Existing methods use the
same filter for both time and space and hence, perform an isotropic temporal filtering. A
novel anisotropic temporal filter for better spatio-temporal feature detection is developed.
The effect of symmetry and causality of the video filtering is investigated. Based on the
positive results of precision and reproducibility tests, we propose the use of temporally
asymmetric filtering for robust motion feature detection and action recognition.

1 Introduction
Motion event detection is important in video analytic applications such as human action
recognition, video summarization, and video retrieval. In action recognition, for example,
the statistics of the motion events in video can be utilized to discriminate different motion
patterns. The global motion maps such as motion history image/volumes [4, 36] or histogram
of optical flow [3] are sensitive to occlusion or clutter. Local motions are more robust to these
situations and their detection does not necessarily require a video segmentation [16].

Spatio-temporal salient features can localize the local motion events in space and time.
A salient feature is defined by its center point referred to as spatio-temporal interest/key
point and is described using the salient appearance and motion features in its extension.
Spatial and temporal scale events require the detection of salient features at multiple scales
for which a multi-resolution spatio-temporal representation of the video is required. The
convolution of a video with linearly separable spatial and temporal kernels provides such
a representation [5, 16]. The local maxima in a saliency map of this representation is the
location where the local motion events occur (Fig. 1(a)).

Both Gaussian and Gabor filters are, when implemented spatially, multi-resolution filters
that are consistent with the functionality of the receptive fields in the human’s vision sys-
tem [18, 34]. For salient feature detection, the existing methods [5, 16, 37] treat the temporal
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(a) Detection of salient features in video (b) 2D projection of volumetric salient features

Figure 1: (a) The process of detecting salient features to localize the local motion events
is depicted. The focus of this paper is on the temporal complex filtering for better salient
feature detection. (b) 2D projection of the volume of salient features at scale σ = 2 and
τ = 4 detected using our novel asymmetric filtering. First and second row show the relevant
(i.e., true positive) salient features for two-hand waving and running action, respectively.

domain as a third dimension of space and apply these symmetric non-causal spatial filters in
the temporal direction. The V1 cells physiology [1, 31, 34], however, motivates the asym-
metry and time causality. In scale-space theory, Lindeberg [18] considered the truncated
exponential as the candidate kernel for convolution with a time-causal signal. By cascading
a series of truncated exponential kernels, they then derived the Poisson kernel as the canon-
ical time-causal kernel for a discrete signal. In practice, as the delay of using non-causal
filtering is negligible, the causal and asymmetric filters are neglected. However, the choice
of the preferred temporal filter for improved salient feature detection is unknown.

The contribution of this paper is on improving the temporal filtering for robust salient
feature detection and consequently, improving the action recognition accuracy. We thus
develop a novel biologically-consistent multi-resolution filtering which is asymmetric and
causal in the temporal direction. This development is based on an anisotropic diffusion to the
past frames. Given the functional nature of this filter, we refer to it as the "asymmetric sinc".
We also introduce the use of Poisson and truncated exponential filters. We then compare
these three asymmetric filters with the standard symmetric Gabor filtering to validate the
performance of these filters by answering three research questions: (1) whether asymmetric
temporal filtering is better than symmetric Gabor filtering for salient feature detection, (2)
which filter is the best, and (3) the features detected by which filter provide higher action
classification accuracy.

Detected using a common framework (Fig. 1(a)), the features of asymmetric filters are
more precise and robust under geometric deformations than the features of the symmetric
Gabor filter. Moreover, these features provide higher classification accuracy than the features
detected using the symmetric Gabor filter, in a common discriminative bag-of-words (BOW)
framework [5, 32]. Overall, our novel asymmetric sinc provides robust features with the
highest classification performance.

The rest of this paper is organized as follows. Section 2 reviews the existing methods
for salient feature detection for localizing the motion events in video. Section 3 describes
the development of the novel asymmetric sinc filter. Section 4 explains the salient feature
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detection from the energy map of the filters. Section 5 presents the evaluation tests and the
experimental results. Finally, Section 6 summarizes the results.

2 Literature review
Detection of spatio-temporal salient features at multiple scales consists of three main steps:
(1) scale-space representation of the video, (2) saliency map construction, and (3) non-
maxima suppression to localize the salient features. To this end, existing methods treat the
sequence of images as a 3D volume. A Gaussian filtering is thus performed spatially, but
different filters have been used for the time direction. For example, Laptev et al. [16] used
Gaussian filtering and extended the Harris corners saliency map to detect start and stop of
video events. Willems et al. [37] used an approximation of the Gaussian filter with the trace
of a Hessian to detect ellipsoids. Dollar et al. [5] used temporal Gabor filtering to detect the
"cuboids" from the energy of the motion map [32].

Treating a 2D+t video signal as a 3D spatial volume for motion analysis raises a funda-
mental question about its validity as the time and space are different in nature. 3D spatial
filtering is performed by three orthogonal filters. For motion analysis in a video, however,
the orthogonality of the temporal filter with the spatial filters is not required [30], but rather
a quadrature pair of temporal filters is required for phase insensitivity [1, 34]. Moreover,
it is well-known that the Gaussian diffusion filtering results in blurring and dislocation of
semantically meaningful structures such as edges and corners in a still image [35]. In the
temporal domain, Gaussian filtering dislocates the salient motions and smoothes both the
motion boundaries and the regions with fast motions [28]. Consequently, we argue that the
temporal dislocation of salient motions might result in false positive detection.

According to scale-space requirements for real-time multi-resolution video representa-
tion [6, 7, 8, 15, 18, 31], the diffusion in the time direction should be limited to just the past
frames to respect the time causality observed in the biological vision. For a discrete signal,
Lindeberg et al. [18] obtained a Poisson kernel as a canonical time-causal scale-space kernel
by cascading a set of truncated exponential kernels. In biological vision, Fourtes [9] mod-
eled the functionality of an axon in the Limulus visual system using a Poisson kernel. This
kernel has been utilized to fit with the data representing the temporal contrast sensitivity of
the human visual system [1, 34]. This filtering is utilized for a biologically-inspired filter-
ing by Jhuang et al. [14]. Shabani et al. [27] showed the promising performance of using
this filtering in extraction of opponent-based motion features and robust local motion event
detection in [29]

We model the scale-space filtering of a 2D+t video signal using circuit theory [10, 12,
22], but considering the time causality. For our development, a graphical network of con-
nected pixels in video is constructed. The diffusion in any direction can then be steered
by the weight on the edge which is the intensity similarity (i.e., conductivity) between the
pixels. We obtain an isotropic spatial Gaussian and an anisotropic temporal asymmetric
sinc as the spatio-temporal kernels for a linear multi-resolution motion map of a video sig-
nal. We then show that the truncated exponential kernel of the Lindeberg [18] is actually
an approximation to our temporal kernel. We therefore evaluate all of these kernels to find
out the best choice for localizing the motion event by detection of salient features. Note
that the anisotropic temporal filtering has shown promising performance for video segmen-
tation [33]. We thus expect to see better performance of the causal and asymmetric filters
for motion detection. Compared to the Poisson, truncated exponential, and Gabor filtering,
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our asymmetric sinc filter provides better feature detection and consequently, better action
recognition (Section 5).

3 Time-causal multi-resolution video filtering
In this section, we introduce a circuit representation to derive a time-causal multi-resolution
representation of a video signal which is then utilized for salient feature detection in the next
section. The circuit representation is used in modeling the neurobiological systems [9, 10]
and modeling the random walk process [12].

A digital image can be viewed as a graph network in which each pixel x is a node con-
nected to the neighbor pixel by a resistance R. The brightness u at each pixel is the charge on
a capacitor C. The flux of the brightness between each two adjacent pixels depends on their
relative brightness. We extend this model to a 2D+t video signal by considering the effect
of the potential of the corresponding pixel from the immediate past frame on the potential
evolution at the current frame. This consideration satisfies the time causality and is modeled
as an external conductance R−1

ext . For simplicity, we show this modeling for a 1D+ t signal
in Fig. 2(a) and derive the equations for this circuit. From Kirchhoff’s Laws (1-4), we can
derive the diffusion equation as the change of the brightness at a given (time-like) diffusion
scale s. The potential at this pixel is denoted by u(x, t;s) and the current by i(x, t;s).

i(x, t;s) = (u(x, t;s)−u(x−dx, t;s))/R1 (1)
i(x+dx, t;s) = (u(x, t;s)−u(x+dx, t;s))/R2 (2)

iext = (u(x, t;s)−u(x, t−dt;s))/Rext (3)

−C
∂u(x, t;s)

∂ s
= i(x, t;s)+ i(x+dx, t;s)+ Iext (4)

Consider R1 = R2 = R and the per unit quantities, R = rdx, Rext = rextdt, C = cdx, and
Iext(x, t;s) = iext(x, t;s)dx. Substitute equations 1, 2 and 3 in the KCL equation 4. At the limit
dt −→ 0 and dx−→ 0, the KCL equation results in the spatio-temporal diffusion equation 5.

∂u(x, t;s)
∂ s

=
1
rc

∂ 2u(x, t;s)
∂x2 − 1

rextc
∂u(x, t;s)

∂ t
(5)

This equation is consistent with the observation of Lindeberg [18] in that the variation
of signal with respect to scale ( ∂u

∂ s ) should be proportional to its second-order derivative in

space ( ∂ 2u
∂x2 ), but first-order derivative in time ( ∂u

∂ t ). For a 2D spatial network of pixels, (x,y),

the second-order spatial derivative ∂ 2

∂x2 is replaced with a 2D Laplacian ∆ = ∂ 2

∂x2 +
∂ 2

∂y2 .
The solution of the diffusion equation 5 is obtained using the Fourier transform. Consider

Ũ(wx,wy,wt ;s) as the (discrete-time) Fourier transform of u(x,y, t;s) with respect to pixel
coordinates X = (x,y, t), in which (wx,wy,wt) are the corresponding spatial frequencies and
temporal frequency. α = 1/rc and β = 1/rextc are related to the image resolution and frame
rate. We consider constant value α and β to obtain a close form solution.

1. Apply a Fourier transform to (5) and solve the resulting ordinary differential equation.

∂Ũ
∂ s

= [−α(w2
x +w2

y)−β ( jwt)]Ũ =⇒ Ũ = [e−α[w2
x+w2

y ]se− jβwt s]Ũ0 (6)
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(a) Modeling time-causal 1D+t filtering (b) Even and odd components of the temporal filters

Figure 2: (a) The brightness u(x, t;s) is the charge on the capacitor C at node x at the current
time t and current diffusion scale s. A pixel is connected to the neighbor spatial pixels by a
resistor R and to temporal past neighbor pixel by Rext . (b) Even and odd components of four
different complex temporal filters introduced in Section 3.

2. The inverse Fourier transform of (6) provides the convolution (?) of the original image
sequence u0 with the (discrete analogue of) spatial Gaussian kernel G with standard
deviation σ =

√
2αs and a time-causal asymmetric sinc k(t;τ) with temporal scale

τ = β s. The S(t) denotes the Heaviside step function.

u(x,y, t;σ ,τ) = G? k ?u0 , G(x,y;σ) =
e−

x2+y2

2σ2

2πσ2 , k(t;τ) = sinc(t− τ) S(t) (7)

Note that by releasing the causality constraint, the diffusion spreads to the future frames
as well. The resulting temporal kernel will be a Gaussian due to appearance of the second-
order temporal derivative in (5).

By considering the stability criteria of |wtτ| < 1, the Taylor approximation of the tem-
poral term in (6) equals to e− jwt τ ∼ 1/(1+ jwtτ). The temporal kernel can thus be approxi-
mated with a truncated exponential function (E(t,τ) = e−t/τ S(t)/τ) for a continuous signal.
The stability constraint shows that for small time scales, higher temporal frequencies are
captured and vice-versa. As explained in Section 2, the truncated exponential is the base for
the derivation of the Poisson kernel P(n;λ ) = λ ne−λ

n! (n denotes the (positive) discrete time
and λ = τ). For the sake of completeness, we also consider both the truncated exponential
and Poisson for the evaluations. This consideration helps us to better understand the effect
of both symmetry and causality in the salient feature detection.

4 Salient feature detection
Local motion events occur at different spatial and temporal scales and hence, the salient
features should be detected at multiple spatio-temporal scales. These features are detected
from a motion saliency map constructed from the multi-resolution representation of the video
signal. From biological vision [1, 27, 34], a motion map should be phase insensitive to
provide a response independent of the phase of the motion stimulus and be constant for a
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periodic motion. Moreover, the motion response should be the same for two stimuli with
opposite contrast but similar motion. The latter requirement ensures a similar response for a
white foreground against dark background and vice versa.

To obtain a phase insensitive motion map, we need two orthogonal kernels to capture
all phase information. We therefore construct a quadrature pair kh(t;τ) = k(t;τ)?h(t) of the
asymmetric sinc using the Hilbert transform h(t) = 1

πt [34].
To obtain a contrast polarity insensitive response, the energy of the filters R = (G? k ?

u0)
2 +(G ? kh ? u0)

2 is utilized. The local maxima in the motion energy map localizes the
salient features [5, 27] (Fig. 1(a)).

Note that the Gabor filter is complex due to multiplying the complex exponential term
e− jw0t with the Gaussian kernel. We can therefore use the energy of the filter outputs for the
motion detection which provides us the "cuboids" [5]. However, to address the phase and
contrast polarity insensitivity of the motion map for the truncated exponential and Poisson
kernel, we make them complex by multiplying the same complex exponential term as the
Gabor (Fig. 2(b)). Multiplying this complex term, in fact, shifts the magnitude of the Fourier
transform of the kernel to the specific frequency of interest w0 = 1/2τ .

5 Experimental tests

This section explains the experiments utilized to compare the performance of a Gabor filter
with three asymmetric filters (Poisson, truncated exponential, and asymmetric sinc) in a
common framework (Fig. 1(a)) for the task of salient feature detection. The features are
detected at nine different spatio-temporal scales (σi = τi = 2 (

√
2)i, i = {0,1,2}) in which σ

is in pixels and τ is in frames. Fig. 1(b) shows sample features detected using asymmetric
sinc at spatio-temporal scale of σ = 2 and τ = 4. Three different scenarios are evaluated:
precision, reproducibility/repeatibility, and action classification.

To provide quantitative results for the precision and reproducibility tests, we need video
samples with ground truth. More specifically, we need segmented videos of the same ac-
tion/subject taken under different views and clutter/occlusion. For these tests, we used the
robustness and classification datasets of the Weizmann dataset [2] for which the ground truth
has been provided. For the action classification test, we used the the KTH [25] and the UCF
sports [24] datasets as well.

The Weizmann robustness data set includes the "deformations" and "view-change"
videos. This set has video samples of "walk" captured under different views (0o-81o with 9o

intervals) and under motion pattern deformations, occlusions, and clutter.
The Weizmann classification data set consists of ten different actions (run, jack, jump,

jump-in-place, wave-two-hands, wave-one-hand, side, bend, skip, and walk) each performed
by at least nine different people in front of a fixed camera (with a total of 93 videos). The
KTH data set [25] consists of six actions (running, boxing, walking, jogging, hand waving,
and hand clapping) with 600 video samples. The UCF Sports dataset [24] includes actions
such as diving, golf swing, kicking, lifting, riding horse, run, skate boarding, swing baseball,
and walk with 150 video samples collected from Youtube website. This dataset is more
challenging due to diverse ranges of views and scene changes with moving camera, clutter,
and partial occlusion.
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(a) Scores averaged over 93 video samples. (b) Scores averaged over all scales and all action samples.

Figure 3: Precision scores for the classification video samples. The Gabor filter [5] has the
worst overall performance. (a) As the temporal scale increases the precision decreases. (b)
There exist more false positives in the videos such as "run" or "jump" with fast motions.
Asymmetric sinc is very good at detecting localized motions such as "wave" and "wave2".

5.1 Precision test
We performed the precision test on video samples of both the classification and robustness
"deformations" data sets to compare the performance of four temporal filters. The precision
score is the ratio of the number of true positive features to all detected features. A feature is
true positive if it has sufficient volumetric intersection with the foreground mask.

Fig. 3 shows the precision score for different scales and different actions. We report the
results for the threshold of at least 25% volumetric intersection; however, the internal testing
shows that the results are relatively consistent across different thresholds. Results show that
causal filters provide salient features that are more precise than those detected using temporal
Gabor filter. Due to linear diffusion, there are two situations in which the uncertainty in
temporal correlation will increase: (a) at high temporal scales (e.g.,τ = 4) (Fig. 3(a)) and
(b) when we have fast motions (e.g., run) (Fig. 3(b)). Higher temporal uncertainty results in
more temporal dislocation and hence, a decrease in the precision.

5.2 Reproducibility tests
In many tracking or recognition applications, the same features should be re-detected if the
geometric deformations such as view or scale change occur [21, 37]. The reproducibility
score is defined as the ratio of the number of matched features between two videos divided
by the total number of detected features. This score is a measure of feature’s robustness.

For view change, we used the videos of "walking" recorded under different views from
the Weizmann robustness data set. Due to the temporal asynchrony of these videos, we used
the feature descriptor (3DSIFT [26]) for matching. For in-plane rotation test, we created
eight videos out of each video from 93 video samples of the Weizmann classification dataset,
rotated from−60o to +60o with an interval of 15o. To test the reproducibility under in-plane
shearing, we used the vertical (horizontal) shearing factor of ({0,0.2,0.4,0.6}) as part of
the shearing transformation. We therefore have 15 shearing transformations for each of
93 video samples (excluding the (0,0)). For the spatial scale change, we generated three
({1/2,1/3,1/4}) sub-sampled videos from each of the 93 classification videos.

As Fig. 4 shows, the asymmetric filters significantly perform better than the Gabor under
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(a) Scores averaged over 93 video samples. (b) Scores averaged over nine scales and ten samples.

Figure 4: Reproducibility score under view change. Note that the Gabor has the worst
overall performance. (a) Asymmetric sinc and Poisson are more robust under view change
at all spatio-temporal scales. (b) The reproducibility of the Gabor filter drastically decreases
after 36o in view change, while asymmetric filters are more robust.

view change. Due to space limitation to show the plots, we summarize the results of other
reproducibility tests in Table 1. Under rotation and shearing, the asymmetric filters per-
form better than the symmetric Gabor filter. The Gabor filter performs slightly better under
spatial scale change because the symmetric structures are better preserved under spatial sub-
sampling. Except from the scale change test, in all other tests, the asymmetric sinc performs
the best.

The results of both the precision and reproducibility tests favor asymmetric filters for
preferred salient feature detection. This observation is in support of the fact that consis-
tency with the human visual system [34] provide better motion detection. Among intro-
duced filters, our asymmetric sinc filter performs generally better than the Poisson and the
truncated exponential. With respect to their peaks, the proposed asymmetric sinc and Pois-
son are asymmetric and hence, they incorporate a few future frames, but much fewer than
past frames. The exponential kernel is the extreme case and considers just the past frames.
The Gabor kernel is symmetric and incorporates the same number of frames from past and
future. In essence, the asymmetric filters are aware of time, but Gabor is not.

A possible explanation for better performance of asymmetric sinc and Poisson is that
they capture wider set of features from asymmetric to symmetric due to the shape change
of these kernels with scale (i.e., they are scale-covariant). The truncated exponential favors
more the asymmetric features and the Gabor is more responsive to the symmetric features.
A higher performance in asymmetric filters for the feature detection promises better action
classification.

5.3 Action classification test
For action classification, we incorporated the same bag-of-words (BOW) setting utilized
in [5, 27, 32]. Salient features are clustered based on their 3DSIFT descriptors [26] into
visual words using K-means algorithm with random seed initialization. We experimentally
set the number of clusters to 200 for the Weizmann dataset and 1000 for the KTH and UCF
sports datasets, consistent with the experimental setting in [32]. We formed the action sig-
nature for a video as the frequency of the occurrences of these clusters in the video. The
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Table 1: Summary of the evaluation tests of different temporal filters for salient feature
detection and action classification. Bold numbers represent the highest performance. Note
that overall our proposed asymmetric sinc filter has the best performance.

Temporal filters
Test Type Gabor [5] Trunc. exp. Poisson Asym. sinc

Precision classification data 64.8 % 78 % 74.7 % 79.6 %
robustness data 91.9 % 94.7 % 93.6 % 96.1 %

Reproducibility

view change 55.5 % 71.3 % 73% 73.4 %
rotation change 86.6 % 88 % 87.8 % 93.3 %
shearing change 84.1 % 88.4 % 86.8 % 91.8 %

scale change 50.7 % 47.5 % 47.1 % 45.2 %

Classification Weizmann 91.7 % 93.1% 94.6 % 95.5 %
KTH 89.5% 90.8% 92.4% 93.3 %

UCF sports 73.3% 76% 82.5% 91.5 %

χ2 distance metric is then utilized for the matching of the action signatures. For the Weiz-
mann dataset, a nearest neighbor classifier is used with leave-one-out setting. For the KTH
and UCF sports datasets, the SVM classifier and the training-testing setting similar to [32] is
used. Table 1 shows that the salient features detected using asymmetric and causal filters pro-
vide higher average action classification compared to non-causal symmetric Gabor filter. As
we expected, our proposed asymmetric sinc filtering performs the best, the Poisson is second
best, and the truncated exponential is third best. Note that there are many action recognition
schemes that we could have used, some superior to the BOW that we used. However, the
focus of this paper is on the quality of the features and the choosing an appropriate action
recognition method is left to future work.

5.4 Summary of the results

We introduced three asymmetric filters which provide more precise and more robust salient
features than the widely used symmetric Gabor filter. Moreover, we used these features
with a standard discriminative BOW framework for action classification. Our novel complex
temporal filter of asymmetric sinc has the best overall performance. Even though the features
detected using the Gabor filter are more robust under the spatial scale change, the action
classification test on the KTH and UCF sports datasets in which there exists camera zooming
shows that the features of asymmetric filters perform better than those of Gabor due to better
overall precision and robustness.

Without video segmentation and with a similar BOW setting, our 95.5% accuracy on
the Weizmann dataset is comparable with the method in [11] with 83.7% and in [26] with
82.6%. Similarly, we obtained 93.3% accuracy on the KTH dataset which is comparable
with 84.3% using 3D Hessian features [37], 88.3% accuracy using dense features [23], and
92.1% accuracy using 3D Harris features [32]. Moreover, our 91.5% accuracy on the UCF
sports dataset is much better than the accuracy obtained using the dense trajectory [13] with
88.2%, the unsupervised feature learning [17] with 86.5%, and the dense sampling [32] with
85.6%. This is in contrast to the previous observations about better performance of dense
sampling/trajectories, showing the importance of proper temporal filtering for robust and
informative salient feature detection.
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6 Conclusion
We developed a novel asymmetric complex video filtering using isotropic diffusion in space
and anisotropic causal diffusion in time. We then evaluated the role of causality and sym-
metry of the video filtering for the spatio-temporal salient feature detection. We observed
that asymmetric filters perform better than symmetric Gabor filtering. As the asymmetric
filters are aware of time, we conclude that a taste of the future is good, but the motion history
is more important. In a standard discriminative BOW framework, we also obtained better
action classification accuracy using asymmetric sinc filter. We are currently experimenting
on more real-world datasets such as HOHA [20] and UCF Youtube actions [19] dataset.
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