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Abstract

Separatrices provide a promising generic approach for the first stages of data-driven
segmentation. However, significant topological problems can arise when the approach is
used with real, discretely sampled images, in particular through the incorrect detection of
multiple adjacent saddles and when there are contacts between separatrices. To avoid the
adjacent saddle problem we use a hexagonal grid. We analyse contacts systematically
in a selection of 2-D images and identify the occurrence of separatrix crossings in a
small number of these cases. We show that crossings generate invalid slope districts
and propose an algorithm for their correction. We argue that correcting these will in
turn improve the performance of graph simplification strategies for data-driven object
detection.

1 Introduction
An important requirement in many image analysis applications, including medicine, is to
be able to detect novel objects for which there is no satisfactory model, and also generation
of graph-based data-driven descriptions of objects which can then be matched to high level
models. Eigenvector-based segmentation method is an example of low level data driven seg-
mentation which has been widely used [18, 20]. Graph-based image segmentation methods
[19, 21] are other examples which generally represent the image as a graph G=(V,E) where
V is a set of nodes representing image pixels and E is the set of edges connecting nodes on a
certain similarity. In [4] a graph-based segmentation is proposed where unlike the previous
similar methods, captures important non-local image properties in the image. This method
assigns a weight to a boundary between two regions by comparing the intensity differences
across the boundary and intensity difference between the neighbouring pixels in each region.
The intensity difference across the boundary is relatively important if it is larger than the
internal intensity differences of at least one of the regions.
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Another powerful approach for extracting low-level image structure is based on separa-
trices [13]. The concepts originated from the classical work of Cayley [1] and Maxwell
[11] who developed a framework for analysing terrain topography, and the terrain analogy
is still very useful for understanding the processes in 2-D images, where image intensity is
mapped to terrain height. Separatrices are defined algebraically as boundaries separating
two modes of behaviour in a differential equation [10]. They run between critical points,
namely local maxima, local minima and saddle points (Figure 1). A saddle in a 2-D image
is characterised as a point where the gradient changes sign four times or more around the
point. Starting from a saddle, a separatrix is a slope line or maximum gradient path (MGP),
either uphill (uMGP) or downhill (dMGP), and continues until it ends at a maximum or min-
imum respectively. The network of separatrices forms the critical point configuration graph
[13] (Figure 1). The smallest cells in this graph are called slope districts and their boundary
critical points should always occur in a circular sequence as follows: {maximum - saddle1
- minimum - saddle2}; the starting point and direction are arbitrary and do not affect the
definition.

Figure 1: The critical point configuration graph of a hexagonal image cropped from a T2
weighted Brain MRI image. G1 = (V1,E) where V1 = {S2−m2−S3−m3−S4−m4−S5−
m1} and E= {MGPs between each two adjacent nodes} surrounds a hill while G2 = (V2,E)
where V2 = {S1−M2−S2−M3−S5−M4−S6−M1} surrounds a dale. G3 = G1

⋂
G2 =

{S5−m1− S2−M3} surrounds the overlapping area between the hill and dale which is
called a slope district.

Watershed segmentation methods have been widely used, e.g. [14] but it is not generally
appreciated that watersheds and watercourses are separatrices, and the low points around a
watershed , where water from one catchment area spills into another , are saddle points .
The uMGPs running between the saddles and maxima are watershed lines which separate
the watershed basins. The dMGPs are watercourse lines which divide the hills.

The separatrix methods have several strengths. They establish a low-level graph-based
representation of the image at a very early stage of processing. This carries advantages for
subsequent operations, for example when grouping to form larger objects [3]; detection of
objects without needing to localise boundaries [6]; generating discrete alternative boundary
representations for an object [7]; matching to high level symbolic models [2]; and ease of
moving between two- and higher- dimensional image data and models.

However, the separatrix methods have various potential limitations. The issue of "over-
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segmentation" is common to all low level methods if no prior assumptions are made about
the size or smoothness of objects to be extracted. But a general purpose approach which can
detect novel objects of unknown size must be able to extract small as well as large objects,
so this apparent disadvantage is really a necessary feature in the design specification. The
implication is that hierarchical grouping or multi-scale smoothing is required to extract the
larger objects and simplify the image.

More importantly, there are significant methodological difficulties that arise when the ap-
proach is used with real, discretely sampled images. The definition of saddle points turns out
to be non-trivial with discrete data [6]. Complex graph configurations can arise, some only
in rare degenerate cases but others more commonly [13, 15]. These can interfere with the
subsequent powerful graph simplification processes, and have limited further development
of the methodology. Some of these problems have been discussed in previous publications
[16] but a comprehensive analysis has been lacking.

Considering typical digital images sampled in a rectangular array, close examination
of all closed paths within (4)-neighbour or (8)-neighbour pixel connectivity around critical
points shows important topological inconsistencies [17]. This is illustrated in Figure 2 and
figure 3. A tessellation which avoids these inconsistencies is given by a regular hexagonal
grid.

Figure 2: According to 8-neighbourhood pixel connectivity, blue and green pixels in (a)
are neighbours. Adjacent objects should share a finite common edge which leads to (c) .
This situation contradicts the 8-neighbourhood pixel connectivity because the yellow pixels
should be neighbours and are not. The same situation happens in (d) where the yellow pixels
share a common boundary in order to be neighbours.

Figure 3: According to 4-neighbourhood connectivity the yellow nodes are neighbours of
both the green and the blue node, but they are not themselves neighbours. Similarly the blue
and green nodes are not neighbours. The only way this can happen in the real world is exis-
tence of an implied object as in (c). This issue causes unresolved topological neighbourhood
conflicts.
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There are hardware and software methods for converting square lattices to hexagons.
Different software schemes have been proposed. For example Hartman [8] used a hexagonal
grid on triangular pixels. Each two vertically adjacent square pixels were averaged to create
a triangle. Each hexagon was then created from 24 triangles or 48 square pixels. Brick walls
are an easy approximation of hexagonal lattice where pixels in alternative rows are shifted by
half a pixel to simulate the hexagonal lattice. Fitz and Green [5] used this approach. They
first subsampled the image such that each sampled image pixel was consisted of four original
pixels. They then shifted alternative sampled rows by half a pixel. Her [9] created a new grid
by starting from a rectangular grid and combining every two adjacent pixels consecutively
along a specified axial direction of the image. A detailed survey on this topic can be found
in [12].

One of the important types of special events that can complicate the construction and
interpretation of the critical point configuration graph (CPCG) occurs when an MGP con-
tacts another MGP (excluding the natural events at the saddles which generate the MGPs
and terminations at extrema). We analyse MGP contacts systematically in a selection of 2-D
images, in order to establish a more stable framework for 2-D and 3-D data-driven segmen-
tation in future work.

2 Methods
The first processing stage is to convert rectangular pixels to hexagonal pixels (Figure 1),
using an upsampling and then resampling strategy with a scaling factor which generates
approximately the same number of hexagons as the original rectangles and preserves the
full resolution of the original image. The hexagons are overlaid on the upsampled pixels
and the intensity value for each hexagonal pixel is defined as the average of the grey values
of the square sub-pixels belonging to that hexagon. Hexagonal lattice avoids the problems
described by Fu [6] in saddle detection with rectangular pixels, which have topologically
inconsistent neighbourhoods.

The hexagons guarantee a complete neighbourhood where all neighbours share a com-
mon edge and not just a vertex. We then construct an object-based data structure where the
neighbours are listed in an anticlockwise sequence. Local maxima and minima are defined
by having neighbours that are all of lower or of higher intensity respectively, which is the
same as saying that there are no sign changes between downhill or uphills in the cyclic list.
Most points are standard "hillside" points (we will continue to use the convenient terrain
analogies) which have two sign changes. Saddles are defined as having four (commonly), or
(rarely) six, sign changes.

From every saddle, maximum gradient paths (MGPs) are generated. In each uphill neigh-
bourhood sector of the saddle, the neighbour with the highest intensity is linked; this process
is repeated until a maximum is reached: this grows an uphill MGP (uMGP). Downhill MGPs
(dMGPs) are grown in the same way. Thus, for standard saddles with four sign changes and
four sectors, the cyclic sequence of paths generated will be {uMGP - dMGP - uMGP -
dMGP}.

The critical point configuration graph is constructed by linking the critical points (nodes)
and the MGPs (edges). Slope districts are closed loops or cells in this graph (Figure 1) and
should have the cyclic boundary sequence {saddle1 - uMGP - maximum - uMGP - saddle2
- dMGP - minimum - dMGP - saddle1}, i.e. four critical points (the nodes) linked by four
MGPs (the edges). The list is reversible and the starting point is arbitrary. In our test images
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we constructed closed loops of all critical points and their linking MGPs, and in each case
tested if these formed valid slope districts.

Excluding the terminations of MGPs, we detect all instances where two MGPs can make
contact (i.e. they share a common hexagon). At contact points we analysed the immediate
hexagon neighbourhood and also the neighbourhood in the CPCG. We excluded plateaus in
this analysis and restricted the processing to regions of interest away from the image borders.
We used images from four sources for these experiments: MRI of the brain; MRI with added
noise; x-ray angiography; micrograph of a blood film; and an image of a changing texture
pattern (Figure 4).

Figure 4: Clockwise from the top left image; x-ray angiography; image of a changing texture
pattern; micrograph of a blood film; MRI of the brain

3 Results
We analysed regions of interest from the images shown in Figure 4, ranging in size from 539
to 1346 pixels (Figure 5). For a given image size, the numbers of critical points, MGPs and
slope districts naturally depend on the structure of the image, with smooth images having a
small number, and images with many small objects or noise larger numbers (Table 1, Table
2). The addition of noise increases the number of critical points, MGPs and slope districts
(Figures 5(a) and 5(b)). The number of maxima does not have to be equal to the number
of minima. However, the Euler number which is the sum of the saddles plus 2 should be
equal to the sum of the maxima and minima. In a small region of interest this does not
hold exactly, but the differences in our examples amounted only to a few percent (Table 1).
In contrast, in 4-neighbourhood and 8-neighbourhood square pixels number of saddles was
underestimated and overestimated. Tables1, 3 and 4 illustrate expected saddles using Euler
formula (maxima+ minima = saddles + 2) and number of saddles detected within each image.

Slope district statistics are given in Table 2. While the majority of cycles formed valid
slope districts, in every image there were instances of invalid slope districts (about 10% of
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Type of point (6 neigh- Brain Brain MRI, X-ray a- Blood film Synthetic te-
bourhood connectivity) MRI noise added ngiogram micrograph xture pattern
Pixels/hexagons 539 539 1712 1080 1346
Maxima 33 45 33 46 51
Minima 16 37 34 52 56
Max + Min (M) 49 82 67 98 107
Saddles (S) 47 80 70 100 106
Euler number (E =S+2) 49 82 72 102 108
Excess of M over E (%) 0% 0% -7% -4% -1%
Saddles over (M-2) (%) 100% 100% 108% 104% 101%

Table 1: Pixels and critical points in the regions of interests (Figure 5) calculated using 6
neighbourhood. Cells show numbers of points unless otherwise stated.

the total). The commonest type of contact event was when alike MGPs (i.e. both uMGP
or both dMGP) merge before continuing to their extremum. These merge points, which we
term subsidiary Maxima or minima (Figure 1 symbols "sM" and "sm"), are normal events.
In our examples these occurred with a frequency of around 50 - 100% of the saddles. In no
case did they generate invalid slope districts.

Unalike MGP contacts (i.e. between one uMGP and one dMGP) were also seen in all
images (Table 2), with a frequency of 2-6% of MGPs. Kissings (Figure 6, marked "K" on
the image), where two unalike MGPs touch but then separate without crossing, comprise
about half of the unalike contacts. Kissings do not lead to invalid slope districts. Crossings
form the other category of unalike contacts and occur with a similar frequency to kissings.
In contrast to all other types of contact, in every case crossing MGPs lead to CPCG cycles
which are not valid slope districts.

Figure 5: Regions of interest cropped from images in Figure 4. (a) from brain MRI; (b) from
brain MRI with added noise; (c) from micrograph of blood film; (d) from x-ray angiogram;
(e) from image of a changing texture pattern.
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Type of path, contact Brain Brain MRI, X-ray Blood film Synthetic te-
events and districts MRI noise added angiogram micrograph xture pattern
MGPs not ending at 167 290 237 239 383
the border
Contacts (all) 45 70 76 59 89
Like-MGP contacts 38 65 66 45 82
(subsidiary extrema)
Like-MGP contacts 23% 22% 28% 19% 21%
as % of MGPs
Unalike MGP contacts 7 5 10 17 7
Kissings 4 2 8 5 4
Kissings as % of MGPs 2% 1% 3% 2% 1%
Crossings 3 3 2 12 3
Crossings as 2% 1% 1% 5% 1%
% of MGPs
Non border SloDs 73 134 114 115 186
Valid SloDs 68 129 108 108 178
Invalid SloDs 5 6 7 9 12

Table 2: Paths, contact events and districts in the regions of interest (Figure 5) calculated
using 6 neighbourhood

Type of point (8 neigh- Brain Brain MRI, X-ray a- Blood film Synthetic te-
bourhood connectivity) MRI noise added ngiogram micrograph xture pattern
Pixels 567 567 1798 1122 1406
Maxima 36 51 40 50 64
Minima 27 49 36 54 63
Max + Min (M) 63 82 76 69 127
Saddles 92 159 116 156 186
Euler number (E =S+2) 94 161 118 158 188
Excess of M over E (%) -33% -49% -36% -56% -32%
Saddles over (M-2) (%) 150% 200% 150% 230% 150%

Table 3: Number of critical points calculated using 8 neighbourhood square pixels. Same
regions of interest as used for table 1 has been used.

Type of point (4neigh- Brain Brain MRI, X-ray a- Blood film Synthetic te-
bourhood connectivity) MRI noise added ngiogram micrograph xture pattern
Pixels 567 567 1798 1122 1406
Maxima 46 88 54 69 87
Minima 42 79 52 62 76
Max + Min (M) 88 167 106 131 163
Saddles 21 21 27 42 51
Euler number (E =S+2) 23 23 29 44 53
Excess of M over E (%) 198% 626% 265% 198% 207%
Saddles over (M-2) (%) 24% 13% 26% 33% 32%

Table 4: Number of critical points calculated using 4 neighbourhood square pixels. Same
regions of interest as used for table 1 has been used.
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We analysed all crossing events in detail. Figure 6(i) is an example which illustrates the
conclusions. A crossing point can always be identified by the list of MGPs entering and
leaving the point. The list must be in order of radial position, and is cyclic (last MGP is
next to the first). We identify an MGP by the id of its start and end points. Thus, for the
crossing point X1 in Figure 6(i), the list (anticlockwise) reads {S1>M1 - S3>m1 - S1>M1 -
S3>m1}. Note that each id appears twice because each path enters and leaves the point. If
there were no crossing, the list would read {S1>M1 - S1>M1 - S3>m1 - S3>m1}. To resolve
the crossing we propose to divert one (but not both) of the MGPs at the crossing. This means
that there are two options for resolving the crossing. Option 1 (Figure 6(ii)): The dMGP
S3>m1 is preserved but the uMGP S1>M1 is diverted at X1 and runs as a normal MGP to
M2, creating the revised MGP S1>M2. The original path S1>X1 is still used, but X1>M1 is
suppressed. Option 2 (Figure 6(iii) ): The uMGP S1>M1 is preserved but the dMGP S3>m1
is diverted at X1 and then runs as a normal MGP to m2, creating the revised MGP S3>m2.
The original path S3>X1 is still used, but X1>m1 is suppressed.

Figure 6: The CPCG of the neighbourhood of a crossing (X1). In (i) {S1 - m2 - S2 - M2 -
S3 - m1 - S1} and {S3 - M1 - S4 - m1 - S1- M1 - S4 - m1 - S3} are two of the incorrect
slope districts in this region. (ii) and (iii) show two options of solving the problem, one
by preserving the dMGP and diverting the uMGP and another by preserving the uMGP and
diverting the dM

One crossing is associated with two or more complex CPCG cycles which break all
the rules for a valid slope district. For each crossing we identify the union of the invalid
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Option no Saddle S1 Saddle S3 Figure Evaluation from cyclic list
connected to : connected to: of boundary critical points

Original M1 m1 Figure 4(i) Invalid: in anticlockwise
cyclic list S3 lies between S1
and M1, while m1 lies
between M1 and S1

Resolution: M2 m1 Figure 4(ii) Possible: in anticlockwise
option 1 cyclic list both S3 and m1 lie

between M2 and S1
Resolution: M1 m2 Figure 4(iii) Possible: in anticlockwise
option 2 cyclic list, S3 and m2

lie between S1 and M1
Invalid M2 m2 - Invalid: in anticlockwise
option 3 cyclic list S3 lies

between M2 and S1,while
m2 lies between S1 and M2

Table 5: Number of critical points calculated using 4 neighbourhood square pixels. Same
regions of interest as used for table 1 has been used.

slope districts, which gives the boundary of the valid graph elements in the surrounding
neighbourhood. In Figure 6 this boundary is the graph cycle {m1 - S1 - m2 - S2 - M2 - S3 -
M1 - S4}. Analysis of the paths which must enter the invalid zone, and the possible critical
points to which they could in principle be connected when they terminate at the boundary
of the zone (Table 5), provides an "inward looking" view of path crossings complementary
to the "outward looking" view from the contact point. As shown in the Table, two possible
valid connections are identified if paths are redirected. Note that these solutions are the same
as those derived from the path connections at the contact point.

4 Discussion

In order to create accurate separatrices and thus accurate slope districts the fundamental con-
cepts need to be correct. Redundant saddles will cause redundant separatrices and redundant
overlapping slope districts resulting in over-segmentation of the image. Using rectangular
pixels with an 8-neighbours (Table 3), the frequency of saddles in the image is 150% - 230%
more than what we expect using the Euler formula (maxima+ minima = saddles + 2). When
checked with rectangular pixels and 4-neighbours there were 13 to 33% fewer saddles than
expected using Euler formula (Table 4). In contrast to these over- and under-estimates, with
hexagonal pixels the saddle frequency was very close to the Euler prediction (Table 1). Con-
sidering that we excluded image border pixels from our calculations the minor differences
can be ignored. As evaluated by the Euler criterion and by inspection of example images,
the hexagons appeared almost completely to avoid the recognised "multiple saddle point
problem" [6] arising with 8-neighbour rectangular pixels in the discrete domain.

We also explored the contacts in each image. As expected, contacts between maximum
gradient paths were common in all our images. The majority were subsidiary maxima or
minima, where two or more alike MGPs (i.e. both uMGPs or both dMGPs) merge before
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reaching an extremum. These are a normal event in the CPCG and are generally easy to
interpret. Most of the other kinds of contacts were also found to be valid, despite initial
inspection sometimes suggesting (for example at kissing points) an error in processing or an
inconsistency between the definitions of the point/ path/ district definitions.

The one invalid contact event was the crossing of unalike MGPs. This violates the basic
topology rules, not only at the crossing and through the expected "twisted" slope district,
but by generating a set of complex topological conflicts in adjacent slope districts. Analysis
of the immediate neighbourhood of a crossing showed that this is a degenerate event; a very
small change in intensities would avoid the crossing, which would divert one of the outbound
paths so that the crossing does not occur. This suggests one possible algorithm to resolve
crossings, namely to perturb the local intensities in such a way that the crossing would not
occur. However, we preferred not to modify the raw data: our proposed algorithm, which we
have not yet implemented, involves diverting one of the crossing paths, effectively converting
the crossing into a kissing (Figure 6 and Table 5). Choosing which path to divert could be
based on local geometry or overall slope district properties, or could be arbitrary.

We presented this algorithm initially from the outward-looking perspective of the local
neighbourhood of the crossing point. It was of particular interest to establish that essentially
the same algorithm can be formulated from the inward-looking perspective of the (valid parts
of the) CPCG surrounding encircling the zone of the crossing. Topological rules applied to
the cyclic list of critical points around the boundary of the union of the invalid districts
showed unequivocally that there had to be a crossing within this unified district, regardless
of the exact location of that crossing, i.e. crossings can be detected "remotely" by analysis of
the CPCG (Table 5, row 1). Similarly, these topological rules could be used to generate the
possible valid connections across the unified district between critical points on the bound-
ary. This remote approach generated the same basic solution options as the local approach.
Furthermore, it became clear that the detailed topological rules applied to the cyclic-list-
ordering of paths leaving the crossing towards the periphery were the same as those applied
to the cyclic-list-ordering of paths leaving the periphery towards the middle of the unified
region.

Our demonstration that most of the contact events between MGPs are consistent with all
of the definitions of data elements in the CPCG provides further support of the generality
of separatrix-based approach used with discrete images. However, contacts between MGPs
that lead to crossings do occur to corrupt the graph. Correcting these will in turn correct
some inconsistent results in graph simplification strategies for data-driven object detection,
which we believe will lead to significant improvements in applications of these techniques
to a wide range of biomedical and other image types.
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