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Abstract

In this paper we introduce a general purpose graphical processing unit (GPGPU)
based method for performing a sweep across a set of the scale invariant feature trans-
form (SIFT) parameters for pairs of images. The focus of the paper is the analysis of
the data generated using information visualisation techniques including a cross brushing
technique between parallel coordinates, scatter plots and histograms. Results have shown
us the importance of carefully selecting some parameters depending upon the properties
of an image pair while other parameters are shown to be robust to variation. The param-
eters chosen by analysis of the sweep data have then been compared to the previously
published SIFT’s values and a consistent improvement in accuracy is shown.

1 Introduction

The scale invariant feature transform (SIFT) is a feature detection algorithm used for finding
correspondence between parts of images thereby allowing image matching. The algorithm
generates high dimensional features from patches selected based on pixel values which can
then be compared and matched to other features. The algorithm has a set of parameters which
can be varied to alter how it behaves and the choice and modification of current favoured
values can be used to improve the quality of the results. In the original paper by David Lowe
[11] a set of default parameters is given with a variety of images but whether or not these are
optimal is not clear.

This paper shows the results of sweeps across this parameter space for various images
in an effort to find the best parameter selection for differing scenarios. A semi-exhaustive
search has been completed by utilising the speed-up provided by a cluster of general pur-
pose graphical processing units (GPGPUs) over CPUs. The large amount of data produced
has then been analysed using parallel coordinate graphs [8], scatter plots and histograms to
uncover patterns to indicate how individual parameters effect the algorithm’s accuracy.
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2 Scale Invariant Feature Transform

The original SIFT feature detection algorithm developed and pioneered by David Lowe [11]
is a four stage process that creates unique and highly descriptive features from an image.
These features are designed to be invariant to rotation and are robust to changes in scale,
illumination, noise and small changes in viewpoint.

The features can be used to indicate if there is any correspondence between areas within
images. Clusters of features from an image that are similar to a cluster of features from
another image may indicate, with a high likelihood, areas that match. This allows object
recognition to be implemented by comparing features generated from input images to fea-
tures generated from images of target objects. The four stages of the SIFT algorithm are as
follows, full details of which are given in Lowe’s paper [11]:

1. Scale-space extrema detection. The first step is to create the Gaussian scale-space
pyramid. Successive blurred images are produced from the convolution of Gaussian
functions to create multiple octaves. The difference of Gaussian (DoG) is calculated
as the difference between two consecutive images within an octave. The initial set of
candidate features are selected by comparing each point in the DoG images to its 26
neighbours and looking for extrema.

2. Feature localisation. The number of features is reduced in this stage by reducing the
number of features. Interpolation occurs to locate the exact, sub-pixel, location of the
candidate features before eliminating the points that are in areas of low contrast and
those that are localised along edges.

3. Orientation assignment. One or more orientations for each feature is calculated, a
process which results in the rotational invariance of the descriptor. The image gradient
directions of the pixels in a feature’s neighbourhood are calculated and added to an
orientation histogram with 36 bins. The values in the neighbourhood are Gaussian
weighted so those nearer the centre have a greater effect on the resulting orientation.

4. Creating the feature descriptor. The feature descriptor is a 128 dimensional vector
which describes the pixel properties of the area surrounding a feature. A 4 x 4 array of
16 histograms is centred on the feature and rotated to match the orientation calculated
in the previous step. The gradient magnitudes are given a Gaussian weighting, added
to the histograms and normalised to create the descriptor.

To match features often the Euclidean distance between two feature vectors is used to
find the nearest neighbour.

3 SIFT Parameters

The choice of parameter values of SIFT effect the response of the algorithm but exactly how
changes in their values vary the result and accuracy of feature matching has not previously
been studied in sufficient detail. Table 1 shows a list of the main intrinsic parameters which
control the response of the algorithm and Lowe’s default parameters [11]. A subset of these
have been selected as the focus of the parameter sweep. The parameter sweep is the incre-
mental adjustment of the parameter values with the output of the algorithm recorded for each
change.
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Parameter Description Default Value
Octaves (1) The number of octaves. 3
Intervals (1) The number of sampled intervals per octave. 3
Sigma (1) The sigma value for initial Gaussian smoothing. 1.5
Image doubled (1) Whether to double the image size before pyramid construction? Yes
Initial sigma (1) The assumed Gaussian blur for input image. 0.5
Contrast threshold (2) The threshold on feature contrast [D(x)| (minimum). 7.7 (0.03)!
Curvature threshold (2) The threshold on feature ratio of principle curvatures (maximum). 10
Orientation histogram bins (3) The number of bins in histogram for orientation assignment. 36
Orientation sigma factor (3) This determines the Gaussian sigma for orientation assignment. 1.5
Orientation radius (3) This determines the radius of the region used in orientation assignment. 3.0 x Ori_Sig_Fetr
Orientation peak ratio (3) The magnitude relative to maximum resulting in multiple orientations. 0.8
Descriptor histogram width (4) The height and width of the descriptor histogram array. 4
Descriptor histogram bins (4) The number of orientation bins per histogram in descriptor array. 8
Descriptor width (4) The height and width of the descriptor. 16
Descriptor magnitude threshold (4) | The threshold on the magnitude of the elements of the descriptor vector. 0.2
Feature vector (4) The dimensions of the feature vector 128
Match ratio The ratio of the nearest to next nearest feature during matching. 0.8

Table 1: The main parameters of the SIFT algorithm and Lowe’s default values. The number
in brackets refers to the stage of the SIFT algorithm where the parameter is applied.

Often experiments use the original Lowe algorithm parameters without specifically tun-
ing them for the task [1, 3, 12, 15] and these may not provide the best results. It has not been
shown that the Lowe parameters are the best generic parameters even though they are a set
which appear to work satisfactorily for many cases.

Other papers have varied the parameters for their work. Jagadish and Sinzinger [9] se-
lected a match ratio of 0.6 for their work comparing SIFT to Radial Feature Descriptors on
tone mapped images without explanation as to why this value was selected. This is also the
case in the paper by Battiato et al. [2] who justify the change of the match ratio through
experimentation. They also find that adjusting the contrast threshold to extract fewer points
results in a smaller set of more stable features. The paper by Park et al. [16] uses SIFT for
fingerprint identification and chooses to use 4 octaves with 5 intervals and a Gaussian sigma
of 1.8. A paper by Tang et al. [17] shows that increasing the Gaussian smoothing reduces
the number of features generated from an image. A paper by Cesetti et al. [5] automatically
adjusts the contrast threshold value based on the properties of the images. An equation cal-
culates a contrast threshold based on the intensity and size of the image and the image is
not processed at scales where this value becomes too small as it proposes that there is a low
probability of finding useful features in a low contrast image. Other papers focus on tech-
niques for tuning parameters for feature detectors and descriptors including SIFT, DAISY
[10] and GLOH [14] using various methods [7, 13, 18, 19].

These cases indicate that adjustment of the parameters can be beneficial to the results and
that Lowe’s defaults are not always optimal. However, they do not provide a full overview
of how to intelligently choose the best parameters for a scenario nor do they cover all the
available parameters.

4 GPGPUs and CUDA

The parameter sweep is a computationally expensive task as adjusting each parameter through
arange of values means the SIFT algorithm will have to be executed on a pair of images for
each iteration to see the effects of all the possible parameter states. This is too time consum-

!'The contrast ratio value depends on the image representation; [0, 256] or [0, 1]. The two values are equivalent.
For our experiment we use [0, 256] hence the values are larger than in Lowe’s paper.
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ing to be carried out on a CPU in a reasonable time, so general purpose graphics processing
units (GPGPUs) have been used to implement SIFT. The inherent parallelism of many parts
of the SIFT algorithm means it lends itself to being implemented on GPGPUs resulting in
significant speed-ups. Tests on a GPU have shown a speed increase for SIFT of up to twenty
times over a CPU?.

The reason why the GPU is so powerful and can be utilised for this project stems from
the large amounts of money being invested in improving their performance for the games
industry. They are mass produced and relatively cheap and have the ability to perform highly
parallel floating point calculations. NVIDIA’s CUDA is a general purpose parallel computing
architecture that provides the tools required for the coding of parallel code for a GPU and
facilitates its execution in a fraction of the time it would take to execute on a CPU. The code
allows homogeneous execution on both the CPU and GPU so all the resources of the system
can be taken advantage of and code which is suited to serial execution can still be executed
on the CPU. The architecture also allows the use of multiple GPUs in parallel.

SIFT has been shown to be successfully parallelised on the GPU in several cases. These
include the use of CUDA in the cases of CudaSIFT [4] and SiftGPU [20], and the use of
OpenGL textures to store and process the images [6].

5 Methodology

To perform the parameter sweep a pair of annotated images are required. The areas which
match between the images are annotated by hand so the system can tell where the scene
should show correspondence. This is shown in figure 1. The system is based on CudaSIFT
by Marten Bjorkman [4] and extracts the features from each of the images in parallel on
two independent GPUs. The extracted features are then matched on a single GPU and the
number of correctly and incorrectly matched features can be calculated using the annotation
points. Then a parameter is changed and the process is repeated.

Parameter Starting value | Samples | Step size | Final value
Sigma 0.1 5 0.6 2.5
Contrast threshold 1 5 5 21
Curvature threshold 5 5 4 21
Intervals 2 5 1 6
Octaves 2 4 1 5
Orientation peak ratio 0.1 5 0.2 0.9
Descriptor magnitude threshold 0.1 5 0.2 0.9
Match ratio 0.2 5 0.2 1.0

Table 2: The sweep input parameters.

A subset of the parameters in table | has been used within these experiments. The param-
eters chosen are shown in table 2 along with their starting values, the range over which they
are varied and the step size of each iteration. These sweep values were selected through ini-
tial experiment, calculating the computation required, by studying how the algorithm works
and recommendations from related papers. This set of parameters results in up to 312500
iterations of the algorithm, depending on the features generated, and takes approximately 20
hours for an image pair >.

The images used are varied so that different objects are detected in various scenes with
changes in scale, rotation and viewpoint so that many different possible SIFT usage scenarios

2Using an AMD Athlon64 FX-70 CPU and an NVIDIA GeForce 8800 GTX GPU.
3Using an Intel Core i7-920 2.66GHz CPU and an NVIDIA 9800 GX2 GPU.
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Parameter Description

Points 1 The number of points extracted from the first image

Points 2 The number of points extracted from the second image

Total matches The total number of matches between the images

Correct matches The number of correct matches between the annotated regions

Annotated matches | The total number of matches from the annotated regions in the first image to the second image
Accuracy The percentage of correct matches in the annotated matches

Table 3: The sweep output parameters.

are covered. This will help indicate which parameters effect the algorithm differently under
different circumstances, provide more information about the optimal parameters and help
indicate any trends and correlation across the parameters. The data produced for information
visualisation analysis has 14 dimensions; one for each of the input and output parameters.
There are six output parameters that are generated during the parameter sweep and these are
described in table 3.

Figure 1: An example of an image pair with annotation boxes showing corresponding re-
gions.

6 Process Employing Information Visualization
Techniques to Gain Insight

This section outlines how the interactive analysis process for analysing results of the param-
eter sweeps®. Parallel coordinate graphs [8], scatter plot arrays and histograms have been
used to visualise and analyse the data. Parallel coordinates is a common way of visualising
multivariate data such as that produced by the parameter sweep. Each parameter has its own
parallel axis and a polygonal line with vertices on the parallel axes represent a point in n-
dimensional space. This visualisation method allows correlation between parameters to be
viewed with the careful use of brushing.

An example of a parallel coordinate graph is shown in figure 2. It has been brushed to
display parameter combinations with the highest accuracy and a number of correct matches
greater than 10. Brushing is an interactive process of reducing the data to a subset. It is done
by selecting parameters value ranges and data values outside of these ranges are excluded.
The red lines display the parameters which meet this criteria. A parameter must produce a
high percentage accuracy and a number of correct matches greater than a minimum to be

“4The full set of images and output data files are available at http://www.rcs.manchester.ac.uk/
aboutus/students/may.
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Figure 2: Parallel coordinates of a 14 dimensional dataset with 262500 elements. The data
is brushed to exclude elements with a very low number of correct matches and low accuracy.

deemed a good selection. The reason that a minimum number of correct matches is required
is that a single correct match could give an accuracy of 100 percent but would be useless
for confirming matches between images as a cluster of points are required and a single data
point could be erroneous. Setting this minimum at 10 eliminates parameter combinations
which give a high accuracy without enough data to be confident of an image match.
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Figure 3: Histograms of three parameters after the data has been brushed. The peaks indicate
the values which contribute most to the data selected by brushing.

On the parallel coordinate graph multiple overlaid lines on a parameter point cannot
be distinguished from a single line through a point. The use of histograms allows each
parameter to be plotted individually showing the distribution of values that pass through
each parameter point. This indicates which parameters contribute most to the results with
the highest accuracy as shown in figure 3. The scatter plot array, such as that in figure 4,
shows each parameter plotted on a 2D graph against every other. This allows correlation
between individual parameters to be observed.
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Figure 4: Scatterplot array of the dataset shown in figure 2 with the same brushing applied.

7 Analysis and Recommendations

This section outlines and explains the results of parameter sweeps using 10 image pairs
which range in size from 300 kilopixels to 1.2 megapixels. The data has been brushed
to display at least 500 parameters combinations with the highest accuracy. This is done
by adjusting an accuracy threshold until the resulting number parameters combinations are
greater than 500. In conjunction with this the number of correct matches is brushed to
be greater than 10 as explained in the previous section. The remaining parameters give an
indication of how to parametrise SIFT in order to achieve reasonably high accuracy matches.
Table 5 shows the maximum histogram values of the parameters after brushing, i.e. the
parameter values which most often result in a high accuracy. The data is explained in detail
in relation to each parameter below.

ball book car landscape left-right lowe soup bin  soup b stick wall mean
Correct Min 10 10 10 10 10 10 5 5 5 10
Accuracy Min 30 50 50 16
Sigma B
Contrast 6
Curvature 5

Octaves
Intervals
Peak Ratio
Dmag Thresh
Match Ratio

Figure 5: Maximum histogram values after brushing the minimum accuracy and correct
matches values. The image pair IDs are in bold. The colour indicates if the peak is strong (a
single very clear peak), medium (clearly the largest peak but with other large peaks present)
or if the histogram is relatively flat as illustrated in figure 3.
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Sigma. Sigma has strong peaks across the full range of values meaning that the choice of
sigma is very specific to an image type and can greatly effect the results. Sigma therefore
needs to be chosen carefully and a single value cannot guarantee accuracy across all image
types. A very low sigma, for example 0.1, will not generate features as the images in the dif-
ference of Gaussian stage will not be different enough for there to be edges to be generated
by their subtraction. Once a minimum sigma value has been reached features will be created
and then as sigma is increased further the number of features will gradually be reduced as
image blur increases.

Contrast threshold. Contrast threshold, like sigma, consists of strong peaks across the full
range of values and therefore must also be chosen carefully for each image pair that is used.
A bad choice can cause low accuracy and the best value varies from image to image so a
single, universal, value will not suffice. A value of 6 appears regularly across the image pairs
as the best choice.

Curvature threshold. The maximum curvature threshold ranges between 5 and 21 and is
not consistent across the various histograms. It appears that that its choice can vary in im-
portance, with most histograms having medium peaks. The mean is 11, which is very close
to 10 the value proposed by Lowe. The number of features remaining increases as the pa-
rameter is increased so setting it low will generate fewer features.

Octaves and intervals. The optimal number of octaves and intervals is 4 or less in nearly all
cases. A higher number of octaves and intervals appears to be unnecessary as they include
the features generated when the parameter is set to a lower value. The extra features gener-
ated from the increase in octaves or intervals will be created when the images are smoothed
and scaled more and therefore comparatively few extra features will be extracted. The ob-
jects matched in the test images vary in scale substantially and parameters values of 4 of less
suffice. Most of the histograms are quite flat and and so selecting the non-optimal value may
not be detrimental to the accuracy.

Orientation peak ratio. This generates very flat histograms therefore the value chosen does
not appear to effect the algorithm. This indicates that the extra computational process and
costs of creating a secondary peak is effectively unimportant, as the number of features where
this is done is too insignificant to effect the results or that as long as a secondary feature is
created in some cases where the peak ratio is greater than 0.9 then generating features for
peaks with lower ratios does not make a significant difference. Further tests will compare
the results of the algorithm with this stage removed completely to see how the algorithm is
effected.

Descriptor magnitude threshold. The results consist of medium and flat histograms. All
the cases where the histograms have some stronger peaks are when the optimal parameter
value is low, 0.1 to 0.3. When high values appear in the results the histograms are very flat
and the choice of parameter makes little difference. This means that selection of a lower
value, for example Lowe’s defaults of 0.2, will allow for high accuracy for all the images in
this set.

Match ratio. Strong and medium histogram peaks indicate that the match ratio should be
high, 0.8 on average. The lower the match ratio value is the more discriminative it is reducing
the number of matches. Extremely low numbers of correct matches have been brushed out
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of the data as they do not provide sufficient information to reliably indicate correspondence
between images. This explains why the match ratio value tends to be high and why it is
better to select a larger value.

When the parameter selection results in a high number of features being extracted this
is generally detrimental to accuracy. High numbers of features are more likely to result in
mismatches as there are more opportunities for the features to match incorrectly. Even if it
does not effect the accuracy it is beneficial to avoid unnecessary feature extraction as this
results in more computation. A balance must be found between generating enough features
to match the target area within the image and too many such that mismatches become more
likely to occur and become overwhelming computationally. The use of parallel coordinates,
scatterplots and histograms which are brushed to remove low accuracy points then show that
many of the parameters combinations which result in a high number of extracted points are
automatically discarded.

A point to note is in relation to the images labeled soup-bin, soup-b and wall and the
data relating to these. For these the minimum correct matches was reduced to a lower value,
5, as the accuracy when this was set to 10 was too low and there was not enough data left after
brushing to draw a conclusion as to the best parameters. This is due to the objects matched
in the images being smaller than in the others and as such a lower number of correct matches
were obtained from the images. 5 is still a sufficient number to identify the object correctly.
Also it is interesting that soup-bin and soup-b, which both use the same image for matching
to different scenes have very similar parameter sweep results.

It should also be noted that while these sweeps took up to 24 hours to complete the time
can be reduced. By removing two parameters from the sweep and setting their values to
Lowe’s defaults the execution time can be reduced to half an hour. The two parameters that
can be safely discounted are the orientation peak ratio and descriptor magnitude threshold as
varying their values doesn’t appear to effect the accuracy greatly. This can be seen in table 5
which shows that the histograms produced for these parameters are generally quite flat with
few significant peaks.

7.1 Parameter Testing

Table 4 shows the percentage accuracy of the algorithm on the test image pairs when using
Lowe’s default values and the values generated from the parameter sweeps. It shows that
in most cases the parameter values obtained from the sweep and graphical analysis perform
equally well or better and some quite significantly so. The cases with low accuracy results
indicates that the image pair does not respond well to the SIFT in general due to the properties
of the image pair and these are generally the cases where the parameter sweep does not
improve the results.

Parameter | ball | book | car | landscape | left-right | lowe | soupbin | soupb | stick | wall
Lowe 7 4 8 8 52 4 5 3 2 8
Sweep 49 0 46 44 51 76 2 0 10 37

Table 4: The percentage accuracy for feature matching when using the Lowe’s default SIFT
parameters and the parameters obtained in the sweep. The sweep parameter values used vary
for each image pair as shown in table 5.
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8 Conclusions

This interactive technique, it is proposed, should be used to fine tune SIFT in situations
where the images are of a known type rather than the results in this paper being a solution
to choosing the best parameters for all occasions. The data in table 4 supports this and
highlights the success of the technique. The results show that some parameters such as sigma
and the contrast threshold have strong peaks over the range of values meaning that a single
selection will never suit all situations. It is therefore important to choose such parameters
well to ensure high accuracy. Many of the other parameters are quite flexible and robust
which means that non-optimum selection may not be detrimental.

Further work will look into how to use this technique to create an intelligent means of
parametrising SIFT based on the properties of an image pair. The aim of this is to allow a
SIFT user to reliably set parameters based on the image properties such as the size of the
object, viewpoint or the object type without having to apply this parameter sweep technique
themselves. Other areas of interest include the effect of other parameters such as the number
of bins in the descriptor, test other ranges and step values and other images types such as
high dynamic range (HDR) and infrared.

Overall, the parameters of SIFT cannot make an improvement by adjustment if the data
is not within the image in the first place thus there is an inherent best match accuracy based
on the image data. However, selecting the wrong parameters can reduce the accuracy of
SIFT as shown in 4. Tuning has been shown to make improvements which may be beneficial
to an application with constrained bounds and where the task will be repeated many times to
justify the computationally expensive sweep process. It is also proposed that it is beneficial
to use this technique with new untested image types and scenes to generate initial parameter
estimates.
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