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Abstract 
 

      The paper describes ongoing research in computer vision based gestural interfaces. 
The aim of the research is to develop a novel, multi-user gesture recognition system that 
addresses key factors of human computer interaction; the latter is not fully addressed in 
computer vision research. The focus of current work has been on efficient and accurate 
skin colour detection.                                                                                            
 Skin colour based segmentation for computer vision applications involving human 
users has received considerable attention over the years. One of the popular techniques is 
physics based skin colour locus in chromaticity space. The skin distribution in 
chromaticity space has shown robustness to changing illumination conditions. The paper 
proposes a technique based on skin samples for identifying skin locus, this does not 
require knowledge of camera parameters and correlated colour temperature of the 
illuminant. The paper also evaluates the potential for using skin locus based segmentation 
for an indoor gesture recognition system; previous studies have mainly focussed on face 
detection and face tracking.  
 

1 Introduction   
 
The increasingly diverse range of computerized systems has motivated researchers to 
develop novel ways of interaction. One of the active areas of research is computer vision 
based interfaces. The research is motivated by various advantages of computer vision 
based interfaces. These advanced interfaces offer a very natural and non-cumbersome 
interaction. Computer vision research in some application areas is well established such as 
teaching aids e.g. the concept of smart classroom [7] and multimedia presentations [3]. We 
are interested in employing vision based interfaces for much more advanced, real life 
applications with high cognitive workload e.g. a traffic monitoring control room. However, 
a new direction in computer vision based HCI research needs to be identified. Researchers 
in this area have focussed primarily on the accuracy of computer vision techniques and 
overlooked the need for addressing human factors when developing novel interaction 
techniques. Some studies in the last few years [6, 16] have pointed out this lack of focus 
and employed usability evaluation. However, if vision based interaction is to replace 
traditional methods for advanced, critical applications a more elaborate framework is 
required. This is the focus of our work in progress; developing a novel gesture recognition 
system where elaborate usability studies are part of the development process.   
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often used for detection and segmentation. Various techniques have been developed based 
on skin colour that aim to address colour constancy; a key problem in computer vision. 
Colour constancy is the apparent constant colour of an object under varying illumination 
conditions. Colour constancy has received considerable attention not only from computer 
vision researchers [1, 21] but researchers have also tried to understand colour constancy 
from physics [8] and optics points of view.  
      Skin colour based segmentation techniques can be broadly classified into four 
categories:   a). Adaptive techniques [11] adapt to changing illumination conditions by 
adjusting a predefined threshold, b). Statistical colour models [13]: two popular approaches 
in this category are histogram colour models and Gaussian mixture models, c). Colour 
Correction Model: colour correction is performed in a colour space that explicitly separates 
luminance and chrominance. The aim is to reduce the dependency on the luminance 
component [19] and d). Skin Colour Locus Technique: this technique is based on the 
distribution of skin colour in chromaticity space. Once the skin distribution is determined, 
thresholds are set which classify an incoming pixel as skin or non-skin.  
 
 1.2.1 Chromaticity Space 
 
The camera response to reflected light reduces the continuous light spectrum to a three 
dimensional space i.e. RGB. The RGB defines the colour space. Pascale [4] gives an 
excellent review of colour spaces. A colour signal comprises of luminance (intensity or 
value) and chrominance (colour information). It is often desirable to represent the colour 
information independent of intensity in a 2-dimensionsal space called a chromaticity 
space. Chromaticity space is advantageous not only in terms of dimensionality [21] but is 
more robust to illumination changes.   Any colour space can be converted to a chromaticity 
space, and there are many options, for this study we use normalized red, green or [r, g] 
chromaticity space. The Red, Green and Blue channels are normalized as follows to 
remove the luminance component: 
 

r =                        g =                      (1) 

 
      Choice of normalized [r, g] space can be justified by its accuracy in face detection [10]; 
it is second only to TSL (Tint, Saturation, Luminance). However, in terms of 
computational efficiency it has the highest throughput of any chromaticity space followed 
by normalized HS (hue-saturation) which achieves 66% throughput of the former [22]. 
 
1.2.2 Skin Colour Locus Technique  

                                                                  
Skin locus depends upon of various factors; temperature of the light source, camera 
characteristics and skin reflectance. Previous studies have used representative conditions 
for determining the skin colour locus; however these studies have mainly concentrated on 
the physics of the skin distribution[15], and response of different cameras to similar 
conditions [2]. Soriano et. al. [14] is one of the very few studies that comprehensively 
evaluate skin locus based segmentation for tracking (faces only). They determined skin 
locus by taking pictures under four illumination conditions with known illuminant 
temperatures and camera calibrated for each condition.  
        This work describes a simple and effective method for determining the skin locus 
without the need for elaborate knowledge of camera parameters and CCT of light sources. 
The technique involves determining skin colour locus by skin samples. This work differs 
from previous related studies [14, 15] as skin locus is determined under everyday indoor 
illumination conditions. The motivation is an important characteristic of skin colour; its 
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contains almost 1200 images of 44 subjects, around 27 images per person, d) UCD Face 
Database is a small database that contains 94 images that have been collected from various 
sources (available at http://ee.ucd.ie/validdb/datasets.html), e) CRL database [13] is a very 
comprehensive database of 4500 web images containing skin and the corresponding skin 
masks and f) IBTD dataset [18] containing 555 web images. 
       The skin detection results for sign language and face datasets are shown in Table 1.  
The segmentation was performed using the thresholds suggested in the previous section i.e. 
red[0.40, 0.65] and green[0.25, 0.35]. 

 
      Table 1: Skin Detection Results 

 
For University of Athens dataset the detection rate was over 80% for three subjects. 
However, for one subject many pixels were misclassified as non-skin (false negatives) with 
correct detection rate around 65%. Skin samples for the said subject were taken manually 
and the lower red threshold was adjusted to 0.38 raising the correct detection rate to around 
85%. Good segmentation for web images in the UCD database is quite interesting 
considering the wide variety in sources and types of these images. To verify these results 
the proposed technique was evaluated on two datasets containing web images.  
       False positives for this technique depend upon the nature of background and other 
objects such as clothes, hair etc. Similar colour objects are likely to be detected as skin. In 
section 5 we discuss removing false positives by combining skin colour and optical flow 
information. 
 

Dataset Correct Detection Rate False Positive Rate 

CRL 72% 16% 

IBTD 89% 21% 

 
Table 2: Skin Detection Results for Web Images  

 
3.1 Skin Detection in Web Images 
 
The correct detection rate for our thresholds is low for the CRL dataset. It was noted that 
skin segmentation results were generally quite poor for images with smaller dimensions 
e.g. less than 100x80 pixels. However, by adjusting lower red threshold to 0.35 we 
increased the range of possible red chromaticity values. We achieved an improved correct 
detection rate of 89.5%. For the IBTD dataset, skin detection results with original 
thresholds were very encouraging: correct detection rate is 89% while the false positive 
rate is 21%. It is worth mentioning that very few images of IBTD dataset are of small 
dimensions.  Correct detection rates for web images make skin-locus based segmentation 
worth investigating for applications such as objectionable image filtering [18]. The 
aforementioned databases can be useful for training a classifier for this purpose. Previous 
studies [2, 14] do not recommend using skin locus segmentation for web images due to the 
numerous sources from which these image are acquired but our results show that if image 
size is not too small good segmentation results can be achieved. As shown above, by 

Dataset Correct Detection Rate False Positive Rate 
University of Athens  75% 9% 
DCU Gesture Image  96% 5% 
GTAV Face Database 88% 11% 
UCD Face Database 77% 1% 
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ethnicities is well established and was observed during evaluation. This shows the 
advantage of using skin colour information in applications involving human users. Despite 
our small training sample high detection rates were reported on datasets containing wider 
variety of skin types. We have shown that only one out of four thresholds mentioned in the 
paper needs to vary for the skin segmentation system to adapt. Combination of skin colour 
and optical flow has shown encouraging results for removing false positives.  The authors 
plan to acquire more images to prepare a specialized dataset for evaluating skin detection 
techniques.   
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