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Abstract

This paper presents a novel method for continuous inter-dependent outputs predic-
tion that predicts each of the multiple output variables based not only on the input but
also on the rest of the outputs. We do so by using for each output kernel regression
functions that are a convex combination of two kernels: the first kernel defined over the
input and the second over the remaining outputs. We propose a scheme in which the
relative importance of these two heterogeneous information sources is learned jointly
with the parameters of the regression scheme. The inference for a new observation is ob-
tained by fix-point iteration which is based on alternatively evaluating the learned output-
dependent functions until convergence. We experimentally validate our proposed method
on 3D human pose estimation problem using the HumanEva-I dataset.

1 Introduction
Discriminative approaches to human pose estimation involve learning a mapping from visual
observations to articulated body configurations given a labelled training set comprising of an
input image or its descriptor x and the corresponding 3D human pose y, i.e., {xi,yi}N

i=1. Such
discriminative learning-based methods have recently received considerable attentions due to
their simplicity, computation efficiency and the fact that they can predict human pose from a
single image without initialization.

In the context of human pose estimation, both the input (image descriptor) and the output
(pose) are high-dimensional vectors but also strongly correlated. The dependencies between
output variables arise from body kinematic structure and physical constraints that can not
occur in arbitrary configurations. For instance, the positions of the elbow centres are depen-
dent on the positions of the shoulders, the ankles dependent on the position of knees etc.
Unfortunately, most of current discriminative methods learn separate scalar-output mapping
functions for each output element that dependent only on the input. Thus they neglect the
dependencies between the output elements a fact that may degrade the estimation accuracy.

In this paper, we introduce a novel regression model that exploits such inter-dependencies
of outputs, named Learning Output-Kernel-Dependent Regression (LOKDR). The basic idea
is that each of output variables is not only regressed with the input image descriptors but also
dependent on the remaining outputs. The basic idea is similar to the one presented by Bo and
Sminchisescu [4], but our model has two appealing differences. First, it has the ability of
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learning the relative importance of these two heterogeneous contributions to the prediction
of each of the outputs automatically as part of training process. By contrast, it is learned
as a post-processing step by time-consuming cross validation in [4]. Second, the inference
process is a simpler fix-point iteration procedure that evaluates the learned regression models
iteratively until convergence replacing the BFGS quasi-Newton optimization algorithm used
in [4].

The rest of the paper is organized as follows: we review the related work in Section 2 and
describe in detail the proposed model in Section 3. In Section 4 we present the experimental
results. Finally, Section 5 concludes this paper.

2 Related work

Mappings between observations and body poses have been learned by either Bayesian Mix-
ture of Experts (BME) [11], Gaussian Process (GP) regression [13], or Relevance Vector
Machine (RVM) [2]. However, these discriminative methods build individual scalar-output
mappings for each of the output variables disregarding the fact that the multiple outputs are
inter-dependent and structured. On the other hand, structured output prediction methods
have recently inspired methods in natural language parsing (NLP), image segmentation and
understanding and articulated object parsing [6, 7, 12].

Often explicit graphic models like Conditional Random Fields (CRF) or Markov Ran-
dom Fields (MRF) [7] are used to model the inter-dependencies between outputs. Maximal
marginal SVM-like algorithms for the discrete inter-dependent outputs have been proposed
by Tsochantaridis et al. [12]. The continuous outputs version is extended for object detec-
tion and body pose estimation in [6]. Aside from explicitly modeling the relations between
outputs, Weston et al. [15] presented Kernel Dependency Estimation (KDE) that implic-
itly models the correlations by similarity measure. KDE decouples output correlations by
first applying Kernel PCA over the outputs and then learns the mappings from the input
space to dimension-reduced space by ridge regression. Bo and Sminchisescu [3] proposed
Twin Gaussian Process (TGP) for structured continuous output prediction that employed
Kullback-Leibler divergence-based dependency measure.

3 Proposed model

Our LOKDR method models the output inter-dependency implicitly by associative kernels
over outputs. More specifically, for predicting each of the outputs yt , we define two kernels
one over the original input x and one over the rest of the outputs y−t . This allow both
the input and the other outputs contribute to the prediction of yt in a single discriminative
kernel regression. In addition, it allows learning the relative importance of each contributions
automatically.

As illustrated in Figure 1, the scalar output yt is not only related to the input vector x
but also related to the remaining outputs y−t = [y1, · · · ,yt−1,yt+1, · · · ,yd ]T. Following [4],
each output variable yt can be predicted from the augmented feature vector x̃t = [x,y−t ]T,
where the y−t contributes to the prediction of the output yt as auxiliary features. For kernel
regression, we define a joint kernel over the augmented features. The proposed kernel is a
convex combination of two kernels, one defined over the input vector x and the other over
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the rest the outputs y−t . Formally,

k(x̃t
1, x̃

t
2) = β

t
1k1(x1,x2)+β

t
2k2(y−t

1 ,y−t
2 ) (1)

with β t
1,β

t
2 ≥ 0,β t

1 +β t
2 = 1. In the kernel regression framework [1], given a set of training

pairs {xi,yi}N
i=1 we learn the dependency mapping from x̃t to yt as

yt = f t(x̃t) =
N

∑
i=1

γ
t
i k(x̃t , x̃t

i)+bt , (2)

∀t ∈ {1, · · · ,d}, where {γ t
i }N

i=1,{β t
1,β

t
2} are the unknowns. In what follows we explain how

to find the unknowns simultaneously during training in a multiple kernel leaning frame-
work [9, 14].

y1 · · · yt−1 yt yt+1 · · · yd

x

Figure 1: Graphical model for proposed regression method

3.1 Learning

For clarity of notation, and without loss of generality we drop the superscript t. Following the
support vector machine (SVM) framework [1] we obtain the optimal values of the parameters
{αi}N

i=1, {β1,β2} as the dual solutions of the following optimization problem:

min
1
2

2

∑
k=1

1
βk
‖wk‖2 +C

N

∑
i=1

(ξi + ξ̂i)

w.r.t. {w1,w2}, {β1,β2}, {ξi, ξ̂i ≥ 0}|Ni=1, b

s.t. yi−∑k=1,2 fk(x̃i)−b≤ ε +ξi

yi−∑k=1,2 fk(x̃i)−b≥−ε− ξ̂i

f1(x̃) = wT
1 φ1(x), f2(x̃) = wT

2 φ2(y−t)

β1 +β2 = 1,β1,β2 ≥ 0

(3)

Following [9], we eliminate one of {β1,β2} and reformat this primal as a nested two-step
optimization problem as follows:

min
β

T (β ) s.t 0≤ β ≤ 11 (4)

1We use x/0 = 0 if x = 0 and otherwise ∞ [9]
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where,

T (β ) =



min 1
2 (

1
β
‖w1‖2 + 1

1−β
‖w2‖2)

+C ∑
N
i=1(ξi + ξ̂i)

w.r.t w1,w2,{ξi, ξ̂i ≥ 0}|Ni=1,b

s.t. yi− f1(x̃i)− f2(x̃i)−b≤ ε +ξi

yi− f1(x̃i)− f2(x̃i)−b≥−ε− ξ̂i

f1(x̃) = wT
1 φ1(x),

f2(x̃) = wT
2 φ2(y−t)

(5)

Setting to zero the derivatives of the Lagrangian of the problem (3) with respect to the
primal variables and substituting KKT optimal conditions in the Lagrangian gives the fol-
lowing dual formation over the Lagrangian multipliers (i.e. the dual variables) α and α̂:2

T (β ) =



max
α,α̂

−1
2 ∑

i, j
(αi− α̂i)(α j− α̂ j)k(x̃i, x̃ j)

−ε ∑i(αi + α̂i)+∑i(αi− α̂i)yi

s.t. ∑
i
(αi− α̂i) = 0

0≤ αi, α̂i ≤C

(6)

where k(x̃i, x̃ j) = βk1(xi,x j)+(1−β )k2(y−i ,y
−
j ). Once the the optimal values {α∗i , α̂∗i }|Ni=1

of the Lagrangian of dual Problem (6) are determined, the unknowns γ in Equation (2) can
be obtained as γi = (α∗i − α̂∗i ),∀i.

Thus, T (β ) of the inner problem (5) can be obtained by a standard SVM implementation
such as LibSVM [5]. The outer problem (4) can be solved by projected gradient descent
algorithm where the derivative of T (β ) with respect to β is computed as

dβ =
dT (β )

dβ
=−1

2 ∑
i, j
(α∗i − α̂

∗
i )(α

∗
j − α̂

∗
j )

(k1(xi,x j)− k2(y−i ,y
−
j )).

(7)

For the constraint 0≤ β ≤ 1, the projected gradient descent is given by

β
(k+1)←max

(
0,min(1,β (k)+η

(k)d
β (k))

)
(8)

where η(k) is the step size which is determined by a one-dimensional linear search. The
algorithm stops at the optimum when

|dT (β )
dβ

| ≤ ε. (9)

which approximates the first-order KKT optimality condition [9]. The learning process is
summarized in Algorithm 1.

2We omit the full derivations due to lack of space
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3.2 Inference
Once the model is trained, the inference for a new observation becomes

ŷ = argmin
y ∑

t
(yt − f t(x̃t))2. (10)

In contrast to [4], we do not use gradient-descent algorithms to optimize y. Instead, we
adopt a simpler fix-point iteration procedure that in our experiments converged a little faster
to a similar optima. Let us define the vector-valued function f = [ f 1, · · · , f d ]T. Then, the
fix-point iteration is performed as y(n+1) = f(x,y(n)). We initialize y(0) using learned output-
independent (i.e. only dependent on the input x) prediction functions for each output dimen-
sion. The inference process is summarized in Algorithm 2.

Algorithm 1 Learning
1: Initialize β randomly or as 1/2
2: while stopping criteria Eq.(9) not met do
3: Compute the kernel matrix as k(x̃i, x̃ j)
4: Use an SVM optimizer to obtain α,T (β )
5: Perform projected gradient descent for Problem (4)
6: end while

Algorithm 2 Inference
1: n← 0
2: Initialize y(0)
3: repeat
4: for t = 1 to d do
5: yt(n+1) = f t(x,y−t(n))
6: end for
7: n← n+1
8: until ‖y(n+1)−y(n)‖ ≤ ε

4 Experimental results
We validate our method on the HumanEva-I benchmark dataset [10] which comprises of 3
subjects performing multiple activities. We use the Walking, Jogging, Gestures and Box se-
quences observed by Camera C1 (8607 valid frames in total) where Table 1 lists the number
of frames of each sequence. Each sequence is divided in half for training and testing, respec-
tively. As in [4, 13], to speed up computations and to compare with other regression models,
we perform local regression based on a reduced set provided by the K-nearest neighbors
(K = 25). The training set consists of training sub-sequences of all motions and subjects and
the test is performed on the testing subset.

Following [8], we use an image descriptor vector x with 270 dimensions that is based
on Histograms of Oriented Gradients (HoG) that are extracted from the silhouette resulted
from background substraction. To obtain the HoGs, the silhouette bounding box is divided
into a 6× 5 grid and gradient orientations in each cell grid are quantized into 9 orientation

Citation
Citation
{Bo and Sminchisescu} 2009

Citation
Citation
{Sigal, Balan, and Black} 2009

Citation
Citation
{Bo and Sminchisescu} 2009

Citation
Citation
{Urtasun and Darrell} 2008

Citation
Citation
{Poppe} 2007



6 WEIWEI GUO, IOANNIS PATRAS: LOKD REGRESSION FOR HUMAN POSE ESTIMATION

Action S1 S2 S3 Total
Walking 1176 876 895 2947

Jog 439 795 831 2065
Gestures 801 681 214 1696

Box 502 464 933 1899
Total 2918 2816 2873 8607

Table 1: The number of frames of each sequence in the dataset

bins. The 57 dimensional pose vector y encodes the relative 3D positions of 19 joint centers
defined relative to "torsoDistal". The estimation error (in mm) is measured as the average
Euclidean distance between the estimated joint position y(n)i ∈R3 and the true ȳ(n)i ∈R3 over
all M joints and N frames [10]. That is, Err = 1

N ∑
N
n=1

1
M ∑

M
i=1 ‖y

(n)
i − ȳ(n)i ‖. We use Gaussian

kernels with kernel widths set to the median distance of nearest neighbours.
Table 2 shows the average estimation errors for all of the 3 subjects. For comparison,

we present the results of WKNN (Weighted K-nearest neighbors), SVR (Support Vector
Regression) and RVM (Relevance Vector Machine) for independent outputs as well as Bo’s
SOAR and our LOKDR models. It can be seen that our output-dependent trained LOKDR
model performs better than output-independent trained models.

In order to compare our model that learns β with [4] that keeps it fixed we present
results on the walking sequences (sampled every 5 frames). In Figure 2 we present results
by varying the β (β = 1 means that the model is trained output-independently). While [4] set
β using cross validation, our model learns it jointly with the other unknowns. This allows us
to learn a different β for each local (i.e. defined over the k nearest neighbours) regressor and
therefore achieve lower error that the one obtain for the optimal value of β for the dataset.

Motion WKNN SVR RVM SOAR [4] Our LOKDR
Walking 81.55 59.82 61.91 56.00 55.87
Jogging 82.55 57.37 58.11 54.18 54.28
Gestures 59.68 50.02 50.33 46.70 46.29

Box 74.90 66.17 66.46 64.54 64.52
Average 74.67 58.35 59.20 55.36 55.24

Table 2: Average estimation errors of WKNN, SVR, RVM , SOAR and our LOKDR models.

5 Conclusions

We have described a new model for output-dependent prediction called Learning Output-
Kernel-Dependent Regression (LOKDR). In this model, the prediction of each output vari-
able is based on two information sources: the original input and the remaining outputs. One
appealing property of our model is that it can learn the relative importance of the two con-
tributions automatically as part of learning process. Validation of our model is shown for
human pose estimation task in Human-I dataset.
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Figure 2: Average errors at different β , not being leaned compared with the learned β on
Walking sequence performed by S1

Figure 3: Samples of pose estimation
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