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Abstract

Gaussian processes have been widely used as a method for inferring the pose of
articulated bodies directly from image data. While able to model complex non-linear
functions, they are limited due to their inability to model multi-modality caused by am-
biguities and varying noise in the data set. For this reason techniques employing mixtures
of local Gaussian processes have been proposed to allow multi-modal functions to be pre-
dicted accurately [11]. These techniques rely on the calculation of nearest neighbours in
the input space to make accurate predictions. However, this becomes a limiting factor
when image features are noisy due to changing backgrounds. In this paper we propose a
novel method that overcomes this limitation by learning a logistic regression model over
the input space to select between the local Gaussian processes. Our proposed method is
more robust to a noisy input space than a nearest neighbour approach and provides a bet-
ter prior over each Gaussian process prediction. Results are demonstrated using synthetic
and real data from a sign language data set and HumanEva [9].

1 Introduction
Inferring the poses of articulated bodies such as hands and people directly from images
requires models which are able to handle complex high dimensional and non-linear data.
Recently, discriminative models that learn a mapping directly from simple image features
to the pose space have grown in popularity due to their fast inference [1, 4, 6, 10]. This
mapping is non-linear, multi-modal and highly noisy due to image ambiguities and subject
variations.

Gaussian processes provide a flexible framework for modelling non-linear noisy data and
have been used for human pose estimation [11, 14]. They model a set of training inputs with
a joint Gaussian distribution with zero mean and a covariance given by a covariance function
k(x,x′) where x are training inputs. Despite their power and flexibility, they suffer from a
number of limitations. Gaussian processes give a predictive Gaussian distribution over the
output space with a single mean and variance. This means that they are unable to handle
multi-modalilty in the mapping from image features to the pose space. Similarly, they are
commonly used with a stationary covariance function which is independent of translations
in the input space. The leads to a model where the learnt signal noise is independent of the
training inputs. As a result, prediction accuracy suffers when a data set contains regions
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with varying amounts of noise, as the Gaussian process model will attempt to average these.
Finally, learning complexity is O(N3) time and O(N2) storage which makes learning from
large data sets impractical without employing sparsification techniques which affect predic-
tion accuracy [7].

Urtasun and Darrell have recently proposed a model that addresses some of these limi-
tations by employing multiple Gaussian processes, each modelling a local region of the data
set [11]. In their method each local Gaussian process has it’s own set of hyper parameters
allowing multi-modality to be modelled. Learning is also possible on large data sets as time
complexity is now O(T S3) for T local experts each of size S where S << N.

However, their method of choosing which local Gaussian process to use when inferring
the predicted output given a test input requires calculating the nearest neighbours in the input
space to find the Gaussian process trained on that region. When using such a model for pose
estimation, the input space can contain large amounts of noise due to changing backgrounds
and illumination. This means that the nearest neighbour calculation can be dominated by
background information rather than the subject itself. Figure 1 shows a test image and it’s
nearest neighbours in the training set calculated using the Euclidean distance between a grid
of SIFT descriptors [10] calculated for each image. This shows that images that are close
in feature space are not necessarily close in pose space. As a result, predictions are made
using Gaussian processes which are trained on other regions of the data set, leading to poor
prediction accuracy.

Test image Feature order: 1, frame: 2107 Feature order: 2, frame: 2108 Feature order: 3, frame: 1736 Feature order: 4, frame: 2119

Feature order: 5, frame: 2120

Feature order: 6, frame: 2106

Feature order: 7, frame: 2029 Feature order: 8, frame: 2118 Feature order: 9, frame: 2110

Figure 1: Visualisation of nearest neighbours in feature space with ground truth pose data
shown in red. Top left image is a test image, and the remaining images are its nearest
neighbours in the feature space calculated from an independent training set. The calculated
nearest neighbours have very similar backgrounds but significant pose variation.

2 Local Gaussian Process Regression

A Gaussian process is a collection of random variables with a joint Gaussian distribution
defined over them [13]. For a training set X = {xn}N

n=1 and Y = {yn}N
n=1 consisting of inputs
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xi and noisy outputs yi Gaussian processes model the function f such that

yi = f (xi)+ εi (1)

where εi = N (0,σ2
noise) and σ2

noise is the noise variance.
Gaussian process regression is formulated as a Bayesian approach that assumes a Gaus-

sian process as a prior distribution over the function values,

p(f|X) = N (0,K), (2)

where f= [ f1, . . . , fN ]
T is a vector of function output values fi = f (xi) and K is the covariance

matrix given by covariance function Ki, j = k(xi,x j). The covariance function k(xi,x j) can
take many forms. In this paper we use a combination of a squared exponential function, a
bias and a white noise term,

k(xi,x j) = σ
2
signalexp

(
−

(xi−x j)
T P−1(xi−x j)

2

)
+θ +σ

2
noiseδi j, (3)

where the model hyper-parameters are Θ = {P,σ2
signal ,θ ,σ

2
noise}, P is a diagonal matrix of

length scales p1 . . . pD and δi j is Kronecker’s delta function. These hyper-parameters can be
learnt automatically from the training set [13].

For an unseen point x∗ and its associated unknown noisy output y∗ the Gaussian prior
placed over the function f with zero mean and covariance k(xi,x j) leads to the distribution[

y
y∗

]
∼N

(
0,
[

K k(x∗,X)
k(x∗,X)T k(x∗,x∗)

])
(4)

where k(x∗,X) is the covariance between the test data and the training data. By conditioning
this on the observed data, the predictive equations for the Gaussian process can be obtained

µ(x∗) = k(x∗,X)K−1Y (5)

σ(x∗) = k(x∗,x∗)− k(x∗,X)T K−1k(x∗,X), (6)

where µ(x∗) is the predicted output mean, σ(x∗) is the prediction variance [13].
Since the distribution over the test output y∗ is Gaussian, any multi-modal regions of the

data set are averaged and modelled as noise through the prediction variance σ2
∗ . Similarly,

since the noise hyper-parameters are independent of translations for the inputs, x, all regions
of the data set are modelled with the same amount of signal noise (σ2

noise in eq. 3). Finally,
the inversion of the covariance matrix K in equation 5 makes inference on large data sets
unfeasible.

To overcome this, Urtasun and Darrell [11] proposed a model consisting of multiple
Gaussian process models each acting as an expert for a region of the data set. Each expert is
trained on a neighbourhood of training inputs which are local in pose space. This means that
multi-modal regions of the data set will be modelled by placing a Gaussian process expert on
each mode. A model with T experts each of size S is trained by selecting T training points
as expert centres and learning the hyper-parameters to model its S nearest neighbours in the
pose space. For an expert i ∈ {1, . . . ,T} a training point n is selected as the expert centre and
is trained using the S points nearest to yn. The expert centres can be chosen randomly or by
using a clustering algorithm. The left plot of figure 2 illustrates how the training points of
each expert are selected on a toy data set.
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Prediction for a test point x∗ is made by selecting the M nearest training points, ηx∗ =
{ηi}M

i=1, to the test point x∗ in the input space. The value M is manually set to control the
number of neighbouring training points that predictions are made from and is typically set to
10. A prediction for each ηi is made by selecting the nearest expert to ηi in the pose space,
and using S nearest pose neighbours as the training set for that expert. These predictions are
then combined as a Gaussian mixture distribution where the distribution over pose is given
by

p(y∗|x∗,X,Y,Θ) =
M

∑
i=1

πi p(y∗|x∗,Xζi ,Yζi ,Θ) =
M

∑
i=1

πiN (µi(x∗),σi(x∗)), (7)

where ζi are the nearest neighbours in pose space for ηi and πi is a function of the inverse
prediction variance. The prediction for each expert is now given by

µi(x∗) = k(x∗,Xζi)K
−1
ζi

Yζi , (8)

σi(x∗) = k(x∗,x∗)− k(x∗,Xζi)
T K−1

ζi
k(x∗,Xζi). (9)

Figure 2 shows the training points selected for each expert on the left, and the predictions
made for a set of unique test points on the right. The model is able to learn a mapping
over the multi-modal region of the data set that a single Gaussian process model would just
average.
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Figure 2: Local Gaussian process experts using method presented in [11]. The model at-
tempts to learn the inverse of x = y+ 0.3sin(2πy)+ ε where ε = N (0,0.052) leading to a
noisy multi-modal regression problem. The model is trained with 3 experts, each compris-
ing of 90 training points. Expert centres are selected using k-means. The left plot shows
the points selected for training each Gaussian process expert and the right plot shows the
predicted values y∗ for an independent test set.

The main limitation of Urtasun and Darrell’s method is that it relies heavily on the calcu-
lation of the nearest neighbours ηx∗ of each test point x∗ in the input space. When estimating
pose directly from images there is often significant noise in the input space caused by chang-
ing backgrounds and subject variations. This violates the assumption that points near in the
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input space are near in the pose space and the calculation of ηxi
can be dominated by noise.

Figure 3 shows the toy problem from figure 2 with extra dimensions of noise added to the
input space. This causes Urtasun and Darrell’s method to select the wrong experts for pre-
diction resulting in inaccurate predictions, even in regions of the data set where there is only
one mode.

Further, the reliance on using the inverse prediction variance as a prior over the predic-
tions πi from each expert is problematic since the prediction variance of a Gaussian process
measures both signal noise and prediction uncertainty. Thus, an expert which is trained on
a region of the data set which contains more noise will receive a lower prior over an expert
trained on a region containing little noise. This gives an unfair bias to regions of the dataset
which contain less noise in the prediction. This effect is seen in figure 2 where the middle
region of the data modelled by expert 2 receives very few predictions. The expert modelling
this region has a higher signal noise than the other experts and therefore its prior, πi, is lower.

The following section explains how these effects can be overcome by using a logistic
regression model to calculate πi as opposed to the inverse variance.
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Figure 3: Toy problem as in figure 2 with noise added to the input space. Inputs X are
appended with a vector sampled from a distribution N (0,10). The left panel shows the
method presented in [11]. The noise has caused the predictions to be chosen from incorrect
experts resulting in lower prediction accuracy. The right panel shows the same problem but
prediction is performed using the method outlined in section 3. Mean squared error in the
left panel is 0.254, and the right panel 0.188.

3 Expert Selection Using Logistic Regression

To alleviate the problems of relying on calculating nearest neighbours in noisy data, a more
powerful model can be learnt to from select which experts predictions should be made. Tak-
ing inspiration from the mixtures of experts literature [3, 12], this paper employs a logistic
regression model to provide a prior over expert predictions.
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In a mixtures of experts model, a logistic regression model is used to select between a
set of linear models playing a similar role to πi in equation 7. Logistic regression models the
probability of an input x belonging to a class ci. The probability of the class conditioned on
the input, p(ci|x), is given by

p(ci|x) =
e(w

T
i x)

∑
T
j=1 e(w

T
j x)

. (10)

This is a linear combination of the inputs x and a vector of weights wi which is then evaluated
with the softmax function such that p(ci|x) ∈ (0,1).

The weights W = {wi}T
i=1 are learnt using standard gradient optimisation techniques to

find Ŵ such that
Ŵ = argmax

W
[L(W)+ logp(W)], (11)

where L(W) is the log likelihood given by

L(W) =
N

∑
n=1

T

∑
i=1

logp(cin|xn,wi) (12)

and p(W) is the prior on the weights. The prior on the weights is chosen as a Laplacian prior
such that p(W)∝ exp(−λ ||W||1) where ||W||1 =∑

T
i=1 |wi| is the l1 norm. Using a Laplacian

prior promotes sparsity in the weights making the model robust to noise in the input space
[5]. The influence of the prior is controlled by λ which is set using cross validation on the
training set.

Training the local Gaussian process regression model is similar to [11] except the extra
step of training the logistic regression model. The logistic regression model is trained by
assigning a class label ci to each training point (xn,yn) which indicates which expert that
training point is closest to in pose space. Predictions for a test point x∗ are now made by
making a prediction from all individual experts and using p(ci|x∗) as a prior on the predic-
tions, replacing πi in equation 7. The predictive distribution now becomes

p(y∗|x∗,X,Y,Θ) =
T

∑
i=1

p(ci|x∗)p(y∗|x∗,Xϑi ,Yϑi ,Θ) =
T

∑
i=1

p(ci|x∗)N (µi(x∗),σi(x∗)),

(13)
where p(ci|x∗) is given by the logistic regression model, and T is the number of experts.
Equations 8 and 9 for the predicted mean and variance for each expert no longer make pre-
dictions using the local neighbour hood ζi as no nearest neighbours are calculated. Instead,
the training set that was used to train each expert ϑi is used. Thus, the predictive mean and
variance for each expert now becomes

µi(x∗) = k(x∗,Xϑi)K
−1
ϑi

Yϑi , (14)

σi(x∗) = k(x∗,x∗)− k(x∗,Xϑi)
T K−1

ϑi
k(x∗,Xϑi). (15)

It should be noted that this method predicts from all T experts as opposed to making the M
predictions in the method presented by Urtasun and Darrell [11]. In practice, this is in fact
considerably faster as the kernel matrices Kϑi can be stored and reused as opposed to having
to recalculate Kζi for each of the M nearest neighbours to the test point x∗. It would be
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simple to reduce the number of expert predictions made by simply choosing the M experts
that maximise p(ci|x∗).

Figure 3 shows the toy problem from figure 2 with extra dimensions of noise added to the
input. The left panel shows predictions made on a test set using the method outlined in [11]
and the right panel shows predictions made using the method presented in this paper. Urtasun
and Darrell’s method is no longer able to model the data accurately showing significant errors
even in areas where there is one mode. Our method is able to cope better with the noisy input
data showing less errors in the unimodal sections of the data set and giving a lower error
overall. The middle section of the dataset is also represented better using our method as the
prior given by p(ci|x∗) is not dependent on the signal noise of the Gaussian process expert.
Recall that πi from equation 7 is a function of the inverse variance. This has the effect of
giving a lower weighting to experts that model regions of the dataset where there is more
noise in the outputs. The expert modelling the middle section of the dataset in figure 2 has
higher noise hyperparameters (σ2

signal and σ2
noise in eq. 3) than the other two experts. As a

result, fewer samples are drawn for the middle expert from the predictive distribution given
in 7. This is shown in the left panel of figure 2. In comparison, the right panel of figure 3
using a logisitc regression prior does a much better job of representing the middle region.

4 Experimental Evaluation

4.1 Sign Language Data Set

We have used the sign language data set from [2] to compare the two methods outlined in this
paper. The data set consists of 5910 frames of sign language captured from BBC television
with manually annotated joint positions for the head and arms. A variety of image features
are calculated for each frame and then the models outlined in this paper are used to learn
a mapping directly from these features to the joint positions. The background is split into
two halves, a static back drop and the images from the television program itself. As these
images are constantly changing, the image features and regression model must be robust to
this noise. The image features used are hierarchical features (HMAX) [8] and grids of SIFT
descriptors [4]. The sequence has been split into 400 frame chunks, 10 chunks are randomly
selected for training and the remaining 4 are used for testing. Dividing the data in this way
allows behaviours from different regions of the sequence tested, but minimises the number
of adjacent training and test frames.

Table 1 shows a comparison between the choice of prior for weighting the contribution
from each expert while performing prediction. A prediction is made from all T experts and
then different priors are used to evaluate E[p(y∗|x∗,X,Y,Θ)] for each test point. This tests
the suitability of the different priors without relying on calculation of nearest neighbours in
the input space. It shows that the inverse variance does not provide a suitable prior over
predictions and gives higher errors than using a logistic regression prior. This is likely be-
cause the prediction variance of a Gaussian process models both signal noise and prediction
uncertainty as stated in section 2. Therefore any noisy regions of the dataset will incorrectly
given a lower weight in the final prediction.

Table 2 shows a direct comparison between Urtasun and Darrell’s method [11] and the
method outlined in this paper. These results show that our method is able to predict the pose
with comparable or better accuracy than Urtasun and Darrell’s method. However, it has the
advantage of enabling prediction to be made considerably faster as the covariance matrices
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Image Feature Inverse Variance Logistic Regression
HMAX 13.64 8.73
SIFT Grid 27.8623 8.90

Table 1: Comparison of prior calculation on sign language data set. Prediction is made from
all T experts as in equation 13 and then different priors are used to weight each prediction.
Inverse variance is πi from equation 7 and logistic regression uses p(ci|x∗) from equation
13. Errors are mean Euclidean distance per pixel calculated between the ground truth and
E[p(y∗|x∗,X,Y,Θ)].

Image Feature Urtasun and Darrell [11] Logistic Regression
HMAX 9.09 8.73
SIFT Grid 10.67 8.90

Table 2: Comparison of Urtasun and Darrell’s method [11] predicted using equation 7
and the method outlined in this paper predicted using equation 13 on sign language data
set. Errors are mean Euclidean distance per pixel calculated between the ground truth and
E[p(y∗|x∗,X,Y,Θ)].

used in prediction do not need to be recalculated for each test point. To compute predictions
for the 1600 frames in the sign language dataset, our method took 5 minutes and [11] took
38 minutes. A sequence of frames showing pose estimation are included in figure 4.

4.2 HumanEva Data Set

We have also evaluated our method using the HumanEva data set [9]. We have taken 4800
frames of Subject 1 performing Walking, Boxing and Jogging actions taken from 3 cameras.
The data has been divided into 200 frame chunks, 19 chunks are randomly selected for train-
ing, the remaining 5 are used for testing. Using images from multiple cameras introduces
changes in the image background which would otherwise be static. We make monocular
predictions of 3D joint positions from a single camera angle by rotating the joint positions
into each camera’s coordinate frame, then subtracting the root of the skeleton. This results in
a joint representation that is independent of camera angle and global position. Hierarchical
features (HMAX) from [8] are used as they do not require an accurate bounding box around
the subject.

The results are shown in table 3. Our method offers an improvement in accuracy over
Urtasun and Darrell’s method.

Urtasun and Darrell [11] Logistic Regression
58.37 53.65

Table 3: Comparison between Urtasun and Darrell’s method and our method on the Hu-
manEva data set as described in section 4.2. Errors are mean Euclidean distance per pixel
calculated between the ground truth and E[p(y∗|x∗,X,Y,Θ)]
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Frame 1000/1600 Frame 1010/1600 Frame 1020/1600 Frame 1030/1600 Frame 1040/1600

Frame 1050/1600 Frame 1060/1600 Frame 1070/1600 Frame 1080/1600 Frame 1090/1600

Frame 1100/1600 Frame 1110/1600 Frame 1120/1600 Frame 1130/1600 Frame 1140/1600

Frame 1150/1600 Frame 1160/1600 Frame 1170/1600 Frame 1180/1600 Frame 1190/1600

Figure 4: Results from our proposed method on the sign language data set. Ground truth
information is in red, tracking results are in blue green and yellow.

5 Discussion

In this paper we have proposed a method for performing accurate regression for noisy, multi-
modal and non-linear data. Our approach uses a mixture of Gaussian processes which are
selected using a logistic regression model over the input space. We have shown that our
method can achieve accurate regression on both real and synthetic data sets and overcomes
some of the limitations of previous methods.

Specifically, by replacing the prior over predictions in [11] with a logisitic regression
model we have shown that more accurate regression can be achieved. By removing the
reliance on calculating nearest neighbours in the input space at test time, our method is also
more robust to dealing with noisy features caused by changing backgrounds and subject
variations.
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