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Introduction Gaussian processes have been widely used as a method
for inferring the pose of articulated bodies directly from image data. While
able to model complex non-linear functions, they are limited due to their
inability to model multi-modality caused by ambiguities and varying noise
in the data set. For this reason techniques employing mixtures of local
Gaussian processes have been proposed to allow multi-modal functions
to be predicted accurately [1]. These techniques rely on the calculation of
nearest neighbours in the input space to make accurate predictions. How-
ever, this becomes a limiting factor when image features are noisy due
to changing backgrounds. In this paper we propose a novel method that
overcomes this limitation by learning a logistic regression model over the
input space to select between the local Gaussian processes. Our proposed
method is more robust to a noisy input space than a nearest neighbour
approach and provides a better prior over each Gaussian process predic-
tion. Results are demonstrated using synthetic and real data from a sign
language data set.

Local Gaussian Process Regression Urtasun and Darrell [1] proposed
a model consisting of multiple Gaussian process models each acting as an
expert for a region of the data set. Each expert is trained on a neighbour-
hood of training inputs which are local in pose space. This means that
multi-modal regions of the data set will be modelled by placing a Gaus-
sian process expert on each mode. A model with 7" experts each of size
S is trained by selecting T training points as expert centres and learning
the hyper-parameters to model its S nearest neighbours in the pose space.
The left plot of figure 1 illustrates how the training points of each expert
are selected on a toy data set.

Prediction for a test point X, is made by selecting the M nearest train-
ing points, N, = {ni}?i 1» to the test point X, in the input space. A pre-
diction for each 7; is made by selecting the nearest expert to 1); in the
pose space, and using S nearest pose neighbours as the training set for
that expert. These predictions are then combined as a Gaussian mixture
distribution where the distribution over pose is given by
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where {; are the nearest neighbours in pose space for 1; and 7; is a func-
tion of the inverse prediction variance. The predictive mean and variance,
Mi(x) and 6;(x), is given by a Gaussian process with covariance Ky, cal-
culated using training points §; and the hyperparameters from the nearest
expert to 7;. Figure 1 shows the training points selected for each expert
on the left, and the predictions made for a set of unique test points on
the right. The model is able to accurately learn a mapping over the multi-
modal region of the data set which a single Gaussian process model would
just average.

However, there are a number of limitations with this method. Using
the inverse prediction variance, 0;(Xy), to set the prior over predictions,
7;, results in experts modelling data with noise in the output space to
receive a lower weighting. This can be seen in the right panel of figure
1 where the middle region of the data is under represented. Also, the
reliance on calculation of nearest neighbours for each test point makes
prediction sensitive to noise in the input space. The left panel of figure 2
shows how the prediction accuracy is effected when noise is added to the
inputs.

Expert Selection Using Logistic Regression Our proposed method is
inspired by a mixtures of experts model and uses a logistic regression
model to select between the Gaussian process experts in an equivalent
role to 7; in equation 1. Logistic regression models the probability of an
input x belonging to a class ¢;. The probability of the class conditioned
on the input, p(c;|x) is given by
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Figure 1: Local Gaussian process experts; training data is shown in black. The left
plot shows the points selected for training each Gaussian process expert in green,
red and blue. The right plot shows in red the predicted values y, for an independent
test set.

Urtasun and Darrell Predicted Samples: MSE 0.257 Logistic Regression Prior Predicted Samples: MSE 0.188
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Figure 2: Toy problem as in figure 1 with noise added to the input space. The
left panel shows results using [1]. The noise has caused the predictions to be cho-
sen from incorrect experts resulting in lower prediction accuracy. The right panel
shows prediction using the method outlined in this paper.

This is a linear combination of the inputs x and a vector of weights w;
which is then evaluated with the softmax function such that p(c;|x) €
(0,1).

Training the local Gaussian process regression model is similar to [1]
except the extra step of training the logistic regression model. The logistic
regression model is trained by assigning a class label ¢; to each training
point (x,,y,) which indicates which expert that training point is closest to
in pose space. Predictions for a test point X, are now made by making a
prediction from all individual experts and using p(c;|xs) as a prior on the
predictions, replacing 7; in equation 1. The predictive distribution now
becomes
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where p(c;|x.) is given by the logistic regression model, and 7 is the
number of experts. The predicted mean and variance for each expert no
longer make predictions using the local neighbourhood &; as no nearest
neighbours are calculated. Instead, the training set that was used to train
each expert ¥; is used. Figure 2 shows how this method alleviates the
issues caused by noisy inputs compared to [1].

Experimental Evaluation The method has been evaluated on a data set
of an actor performing sign language with manually annotated 2D joint
positions. The below table shows the mean absolute error of our method
compared to [1]. Prediction using our method is roughly 8 times faster as
covariance matrices are not recomputed at each test point.

Image Feature

Urtasun and Darrell [1]

Logistic Regression

HMAX

9.09

8.73

SIFT Grid

10.67

8.90
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